B_ZML Fundamentals of Mathematical Logic

University of Finance and Administration
Winter 2024
Extent and Intensity
0/2/0. 3 credit(s). Type of Completion: z (credit).
Teacher(s)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Timetable of Seminar Groups
B_ZML/cAPH: Wed 12:15–12:59 E230, Wed 13:00–13:45 E230, E. Ulrychová
Prerequisites
There are no prerequisites for this course.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the basic terms of propositional and predicate logic: propositional formula and its truth value, tautology, contradiction, conjunctive and disjunctive normal form, formula in predicate logic.
Learning outcomes
At the end of the course students should be able to: formalize simple statements, determine a truth value of a propositional formula using a truth table, use important tautologies, to find conjunctive and disjunctive normal forms of formulas, interpret and negate formulas in predicate logic.
Syllabus
  • 1. Introduction to the study of logic
  • 2. Basic concepts
  • 3. Formalized languages
  • 4. Logical connectives
  • 5. Full list of logical connectives
  • 6. Functional completeness in propositional logic
  • 7. Selected important formulas of propositional logic
  • 8. Axiomatization
  • 9. Predicate logic
  • 10. Selected important formulas of predicate logic
  • 11. Conjunctive and disjunctive normal forms
  • 12. Minimization of conjunctive and disjunctive normal forms
Literature
    required literature
  • ULRYCHOVÁ, Eva. Matematická logika. Výukové materiály v ISu, 2022.
  • TRLIFAJOVÁ, Kateřina a Daniel VAŠATA. Matematická logika. Praha: ČVUT, 2013 (dotisk 2018). 174 s. ISBN 978-80-01-05342-3.
    recommended literature
  • ČECHÁK, Vladimír. Základy logiky a metodologie. Praha: Vysoká škola finanční a správní, 2007. Eupress. ISBN 978-80-86754-90-1.
  • SOCHOR, Antonín. Klasická matematická logika. Praha: Karolinum, 2001. 402 s. 80-246-0218-0.
  • PEREGRIN, Jaroslav. Logika a logiky: systém klasické výrokové logiky, jeho rozšíření a alternativy. Praha: Academia, 2004. ISBN 80-200-1187-0.
Teaching methods
The course is realised in the form of seminars in full time study and tutorials in part time study. Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit. Passing a written test (min. 60%) is required to award the credit.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 12 hodin KS/semestr.
The course is also listed under the following terms Summer 2020, Summer 2021, Summer 2022, Summer 2023, Winter 2023.
  • Enrolment Statistics (recent)
  • Permalink: https://is.vsfs.cz/course/vsfs/winter2024/B_ZML