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Abstract
Real effects of monetary policy depend crucially on the nature of nominal rigidities. These 
rigidities are typically modelled as sticky prices with explicit assumptions on either fre-
quency of price adjustments (Calvo-style models) or on the cost of adjustment (menu cost 
models). However, recent empirical work cast doubts on these workhorses of standard 
New Keynesian models. This paper discusses another approach to nominal frictions, which 
is based on the assumption that agents face difficulties processing information. If, for 
instance, price-setters learn about an interest rate cut with a delay, then their price also 
responds sluggishly. This rigidity implies positive temporary effects on output and unem-
ployment. We conclude that models based on information frictions can account for several 
empirical facts other model have difficulties reconciling with, such as sluggish responses 
of both real and nominal variables, frequent but staggered price changes or a steeper 
Phillips curve and higher profit losses with more volatile environments. Moreover, rational 
inattention provides important implications for policy.
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Introduction

Models that are used to assess the optimal monetary policy are typically built around 
certain assumptions about the nature of nominal rigidities. Different assumptions gener-
ate different results and thus also potentially drastically different prescriptions for opti-
mal policies. This paper argues that there are several good reasons to built such models 
around information frictions in the form of agents’ inattention. We also discuss the basic 
policy implications of such models.

The most common nominal friction are driven by explicit assumptions of price stickiness 
using Calvo-style adjustments or some form of menu cost. Bils and Klenow (2002), how-
ever, cast doubts on these assumptions by finding that individual prices do not stay fixed 
for long periods of time. When the models are calibrated to fit the observed frequency of 
price changes, then the implied real effects of nominal shocks are very small. Bils and Kle-
now (2002) thus motivated macroeconomists to focus on prices at the micro level, too.
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An alternative line of the modeling of nominal rigidities is based on the assumption that 
agents cannot attend to all the available information about new shocks. This idea was pro-
posed by Christopher Sims, formulated in a framework called “rational inattention”(Sims, 
1998, 2003). Simply put: if price-setters do not pay attention to new shocks, they can not 
respond to them and their prices thus stay rigid.

Mackowiak and Wiederholt (2007) showed that rational inattention can generate real ef-
fects of monetary policy. While nominal aggregates, e.g. the price level, respond to mon-
etary shocks with a delay, individual prices change all the time, which is, however, counter-
factual. This problem was resolved in Matějka and Sims (2010) and Matějka (2010a). These 
papers expand the approach of Mackowiak and Wiederholt by not only modeling of how 
much information price-setters process, but also what they process information about.

Rationally inattentive agents in these models actively seek those pieces of information 
that carry the most value. It turns that the implied price dynamics of such price-setters 
corresponds very well with the data: prices stay rigid for a while, but not for too long, and 
aggregates respond with a delay to aggregate shocks, which generates real effects of 
monetary policy.

Rational inattention describes the humans’ limited ability to process information. Most of 
policy-related information is accessible with very little cost. We could, in principle, find out 
what the current federal funds rate is at every single moment, we could find out the last 
reported unemployment rate or the GDP growth. These pieces of informational are easily 
attainable at most major business magazines or on the internet. Few of us, however, do 
so very frequently.

Intuitively, the less the information is important for one’s business the less likely it is that 
the individual bothers to devote time to acquire it. For example, most bankers know the 
current level of the funds rate at least approximately, lower number of academics know 
about it, and some local businessmen would not even know whether the rate moved in 
the last two years at all.

Although the papers above show that rational inattention can account for realistic dynam-
ics of prices, it has been criticized on the grounds that the required amount of information 
price-setters process is too low. This criticism was addressed in Matějka (2010b), where 
the author shows that inattentiveness on the consumers’ side suffices to generate rigidity 
of prices. The intuition for this result goes as follows: consumers who dislike processing 
information prefer stable prices. If prices are not stable, then the consumers have to pay 
extra cost finding out what the current prices are. Price-setters consider effects of their 
dynamic pricing strategies and choose to keep their prices relatively stable, in order to 
attract more consumers and induce higher sales.

This paper expands on Matějka (2010a) and Matějka (2010b). It does so by studying dy-
namic effects of aggregate shocks and by exploring implications of inattention in various 
environments. We find that, for instance, that nominal rigidity is weaker in more competi-
tive industries or under more volatile aggregate conditions. This is particularly important 
at times of crises, such as in 2008 and 2009, when the resulting responses to monetary 
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shocks can be quite different from those during normal times. When we account for en-
dogenous choice of attention level, prices are more flexible during times of high volatility, 
since agents choose to process more information. This implies that monetary policy has 
little real effects.

These findings have numerous implications for policy, which we briefly discuss in the final 
section.

1 	 Nominal Rigidity

Rational inattention allows for endogenizing what pieces of information to process. Deci-
sions of rationally inattentive agents are not a priori biased by a specific form of any mecha-
nism by which they process information. All pieces of information are freely available and 
agents can select which of them to process. It sounds intuitive that agents want to be more 
aware of variables that are important to them, such as income to a household or input cost 
to a producer. Or for instance, a price-setter in a highly competitive industry could devote 
more attention to prices of his competitors than if the competition were low.

Agents not only differentiate between variables (e.g. attention to inflation or GDP, etc.), they 
can also pay different amounts of attention to different levels of the same variable and also 
different amounts of attention to the same variable under different conditions. If an agent 
uses a credit card, he may not pay full attention to the level of his debt and may consume 
some typical amount. However, once his debt approaches the credit limit, he needs to be 
more aware of exactly how much more he can charge on the card. Furthermore, economic 
actors do not need to pay much attention to slowly moving variables such as to most of 
the aggregate indices. The more predictable variables are, the less information needs to be 
processed about them. In case volatility of these variables increases, agents might check on 
their current values more often, to keep being informed reasonably precisely.

This section focuses on nominal rigidity. It first presents two examples of static prob-
lems studying effects of competition on what sources trigger swifter responses, on the 
informational content of prices and on the rate of responses. Next, we present a dynamic 
model studying trade-offs between attention devoted to stable aggregate variable, such 
as a price level, and volatile input cost, such as commodity price. We also discuss implica-
tions of varied levels of the respective volatilities, which provides us with intuition about 
monetary policy effects on different industries. The section is concluded with a dynamic 
model of an inattentive consumer.

1.1 	 Allocation across Variables: When Sellers Respond to Cost Shocks and 
When to Changes of Competitor’s Prices

Let us study a model of a seller allocating his attention between unit input cost of his 
product and competitor’s price. The seller faces a consumer, who has nominal endow-
ment e = 1, she desires to consume two different products, whose prices are p1 and p2, 
to maximize the CES utility aggregate
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subject to a budget constraint: c1p1 + c2 p2 ≤ e. θ = 1/(1 − r) is the elasticity of substitution, 
θ ∈ (1, ∞). The consumer is assumed to have unlimited abilities to process information 
about the two prices, her demand for the product 1 is:
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A seller of the product 1 maximizes the expectation of his profit,  
 

Π(p1, p2 , µ) = c1(p1 , p2)(p1  − µ).     (3) 
 

He first processes information about the competitor’s price, p2, and his unit input cost, µ. 
Finally, he selects his own price, p1. For the purposes of this example, we study a 
partial equilibrium only, taking distributions of p2 and µ as given. Let µ be uniformly 
distributed in (1, 1.1) and p2 uniformly in (2, 2.2). We need to solve (11) −  (15) in 
Appendix. A source variable is a vector (p2, µ), while the response variable is the seller’s 
price, p1. 
 
Figure 1 summarizes responsiveness of the seller’s price to unit input cost and to 
competitor’s price, both in less and more competitive markets.  When θ = 3, i.e. goods 
are relatively poor substitutes, price p1 varies relatively more with changes in input cost 
than with shocks to competitor’s price. A distribution of prices for flexible input cost 
and a fixed competitors price (upper left graph) is more spread out than when input cost 
is fixed and competitor’s price is varied (upper  right). 
 
On the other hand, when θ = 20, i.e. goods are much better substitutes - the market is 
more competitive, price p1 responds more or less to changes in the competitors price 
only. 

A seller of the product 1 maximizes the expectation of his profit, 

Π(p1, p2 , μ) = c1(p1 , p2)(p1  −  μ).  � (3)

He first processes information about the competitor’s price, p2, and his unit input cost, µ. 
Finally, he selects his own price, p1. For the purposes of this example, we study a partial 
equilibrium only, taking distributions of p2 and µ as given. Let µ be uniformly distributed 
in (1, 1.1) and p2 uniformly in (2, 2.2). We need to solve (11) − (15) in Appendix. A source 
variable is a vector (p2, µ), while the response variable is the seller’s price, p1.
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Figure 1 summarizes responsiveness of the seller’s price to unit input cost and to com-
petitor’s  price, both in less and more competitive markets. When θ = 3, i.e. goods are 
relatively poor substitutes, price p1 varies relatively more with changes in input cost than 
with shocks to competitor’s price. A distribution of prices for flexible input cost and a fixed 
competitors price (upper left graph) is more spread out than when input cost is fixed and 
competitor’s price is varied (upper right).

On the other hand, when θ = 20, i.e. goods are much better substitutes - the market is more 
competitive, price p1 responds more or less to changes in the competitors price only.

When θ = 3, the seller possesses tighter knowledge about µ, while if θ = 20, then almost 
all information capacity is spent on tracking p2.

1.2 	 Choice of Information Amount: 
Competitive Industries Generate Flexible Prices

In the first example, we addressed the question of attention distribution, while the total 
amount of information was kept fixed. However, we could assume that agents also choose 
how much information to process. Let RIκ stand for the original model of a rationally in-
attentive seller with a fixed information and RIλ denote a model with fixed unit cost of 
information. In RIλ, sellers find the processing somewhat unpleasant and process more 
information only as long as its cost is lower than the marginal benefits from it. Agents 
maximize expectation of profit,
�

(4)Π (μ, p, κ) = p−θ (p −  μ) −  λκ,  ∼

where λ is the cost of processing 1 bit of information about µ, and κ is the amount of 
information the price-setter chooses to process.

It turns out that sellers in highly competitive industries decide to process more informa-
tion about input cost, because their profits are more sensitive to suboptimal pricing. We 
compare sellers of the same size that face demands with different elasticities. Elasticity of 
demand is a measure of the degree of competition in an industry. Magnitude of demand 
(size of the firm) determines shadow price of information and thus influences choices 
of how much information to process. Larger sellers decide to process more information. 
Normalizing the magnitude thus allows for unbiased comparisons of information choices 
across markets.

The seller maximizes
�

(5)Π(μ, p, κ) = p 
popt (μ0) 

−   
(p −  μ) −  λκ.  ∼ θ

Figure 2 shows computational results of the dependence of a selected κ on demand elas-
ticity, θ, for unit input cost uniformly distributed in (0.8, 1.2) and λ = 0.5 · 10−3 . Optimal 
information capacity is an increasing function of θ.

To justify this result analytically, we can apply the approach developed in Matějka (2010a). 
The corresponding approximate loss factor at µ0 is
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0 

θ 
L(μ 0 , θ) = 2μ .  

�
(6)

It is a decreasing function of θ. The higher elasticity of demand, e.g. degree of competi-
tion, the bigger the loss from imperfect information about the input cost. Given the same 
levels of input cost and the same firms’ sizes, agents process more information in more 
competitive industries. Moreover, since the price is tracked more closely, more informa-
tion leads to more flexible prices.

Mutual information between two random variables is a measure of how much about one 
variable can be inferred from learning about the other. Even for an outside observer, the 
seller’s higher information capacity implies that prices carry more information about the 
input cost.

Figure 2: Comparisons across industries
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This finding relates to Hayek’s famous defense of free markets, Hayek (1945), specifically 
on the grounds of markets’ ability to convey information. Rational inattention implies that 
the more competitive a market is the more information can be extracted by observing its 
prices.

1.3 	 Dynamics and Aggregate Trade-Offs

In this section, we will use a model introduced in Matějka (2010a). It shows that unlike 
sticky-price models, rational inattention can generate frequent price changes together 
with delayed aggregate responses. The model’s results agree very well with the empirical 
findings in Eichenbaum, Jaimovich, and Rebelo (2008).

In the following model, there are two stochastic variables to which the seller responds. 
Let the unit input cost be composed of two parts: an i.i.d. real unit input cost denoted by 



013Acta všfs, 1/2012, vol. 6

µ and the second one be a serially correlated nominal variable A. µ is supposed to be an 
idiosyncratic volatile part of the input cost specific to the seller, while A plays the role of 
a slowly moving aggregate variable, e.g. a price level. The profit function takes the fol-
lowing form.

Π(A, μ, p) = p−θ (p −  Aμ). � (7)

A is a price index shifting the distribution of the nominal input cost Aµ. The aggregate 
variable takes two different values only and that it is Markov. Let the Markov process be 
symmetric with a probability of transition to the other state equal to t. A  is binary, its 
distribution is determined by the probability of either one of the two states. Let the state 
variable be x = P rob(AL ), where AL stands for the lower value of A. The model’s equations 
are formulated in Appendix.

For computations, I used κ = 1, θ = 3, µ uniformly distributed over (0.8, 1.2), AL = 1, AH = 1.1, 
t = 0.002 and β = 0.9992. One period is supposed to be one week. t = 0.002 implies that 
the probability of changing a state (a 10% shock to the aggregate variable) at least once 
during a year is about 10%. The annual discount factor is 0.96.

Figure 3 shows the results of simulations over 120 periods. There is a shock to A in the 
period denoted as 1, when A switches from AL to AH. The top series in the figure presents 
one realization of a price series and the second one shows a time-series of knowledge 
about A in the same simulation.

The price setter processes information about Aµ and responds to it, trying to target the 
optimal price θ/(θ − 1)Aµ. Although Aµ is distributed over a continuous range in every pe-
riod, prices again exhibit lots of rigidity of the values as well as in the i.i.d. case. Given prior 
knowledge about A, together with its true value, the distribution of prices as responses 
to realizations of µ is discrete. However, when knowledge about A changes, the distribu-
tion of prices changes too. For the used values of parameters (κ, t, AH, etc.), knowledge 
adjustment is rather abrupt. The second series in Figure 3 shows a knowledge adjustment 
that is quite typical for all realizations of single simulations with these parameters. What 
varies from one simulation to another is the period in which the seller finds out that A has 
probably switched to a new value. The sudden change of knowledge is, however, not 
inherent to all solutions under rational inattention. The next subsection discusses this 
point in a little more detail.

The bottom two series in Figure 3 are prices and knowledge averaged over 10 000 runs. The 
average knowledge about A shifts slowly, while the average price does actually change 
abruptly in period 1. The variable of interest to the seller is in fact Aµ, not values of A and 
µ separately. Due to different dynamical properties of A and µ, and a non-uniform prior 
on Aµ, the agent does not process information exactly about Aµ only. Although, the seller 
does pay special attention to Aµ, he also refines knowledge about other regions in the 
whole A × µ space. In period one, after a positive shock to A, the seller is likely to find out 
that the value of Aµ is high and thus the probability that a distribution’s top price is real-
ized increases. Due to the prior knowledge that A is probably at the lower state, the agent 
underestimates the true value of Aµ. Expected price adjusts abruptly, but still less than 
optimally. Since A stays at the higher level, the agent obtains signals on a high Aµ several 
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periods in a row and slowly learns that it is not due to a streak of high µ, but rather due 
to a jump in A. The average price further increases towards the new optimal level. Prices 
change frequently, but responses to shocks to the aggregate variable are delayed.

The difference between RIκ and RIλ versions of the dynamic model correspond to differ-
ences between their static counterparts. Stochastic properties of the variables of interest 
(µ and A) influence the agent’s choice of what pieces of information and potentially how 
much information to process. Let us vary these properties and study their implications for 
responses to shocks to the aggregate variable A.

1.3.1	 Idiosyncratic Volatility

Thus far, µ was uniformly distributed in (0.8, 1.2). Table 1 summarizes numerical results for 
RIκ with κ = 1, θ = 3 and t = 0.002 for three different widths of the distribution of µ:

Figure 3: Two stochastic variables, sudden learning, t = 0.002, κ = 1

 
 
Figure 4: Average price response, 3 distributions of µ, λ = 0.003 
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Figure 4: Average price response, 3 distributions of µ, λ = 0.003

 
 
for µ fixed at 1, uniformly distributed in (0.9, 1.1) and in (0.8, 1.2). Two characteristics 
of responses to a shock to A averaged over 10 000 runs are in columns 2 and 3. “1st per. 
adj.” represents a portion of the average long-term adjustment that was realized during 
the first period, while “90% adjustment” denotes the number of periods it takes the 
average price until 90% of the full adjustment is realized. 
 

Table 1: Implications of idiosyncratic volatility for average responses, κ = 1 
 

µ 1st  per.  adj. 90% adjustment profit loss 
1 

(0.9,1.1) 
(0.8,1.2) 

100% 
83% 
61% 

1 
2 

11 

0% 
0.28% 
1.09% 

 
The more volatile is the seller’s idiosyncratic part of the input cost the slower he responds 
to aggregate shocks. When µ is fixed at 1, 1 bit of information is sufficient to track 
innovations of the binary variable A perfectly. The column “profit loss” presents seller’s 
losses in comparison with pricing under perfect information - this quantity was evaluated 
with both µ and A simulated according to their stochastic properties. As expected for RIκ, 
losses are higher in more volatile environments. 
 
Results of the similar experiments for RIλ, λ = 0.003, are shown in Table 2 and in 
Figure 4. Unlike RIκ, RIλ generates faster responses to aggregate shocks when µ is 
more volatile. 

 
Table 2: Implications of idiosyncratic volatility for average responses, λ = 0.003 

 
µ 1st  per.  adj. 90% adjustment profit loss mean κ 
1 

(0.9,1.1) 
(0.8,1.2) 

8% 
22% 
60% 

25 
17 
12 

0.08 
1.34% 
1.34% 

0.0086 
0.014 

0.86 

for µ fixed at 1, uniformly distributed in (0.9, 1.1) and in (0.8, 1.2). Two characteristics of 
responses to a shock to A averaged over 10 000 runs are in columns 2 and 3. “1st per. adj.” 
represents a portion of the average long-term adjustment that was realized during the 
first period, while “90% adjustment” denotes the number of periods it takes the average 
price until 90% of the full adjustment is realized.

Table 1: Implications of idiosyncratic volatility for average responses, κ = 1
µ 1st per. adj. 90% adjustment profit loss
1 100% 1 0%

(0.9,1.1) 83% 2 0.28%
(0.8,1.2) 61% 11 1.09%

The more volatile is the seller’s idiosyncratic part of the input cost the slower he responds 
to aggregate shocks. When µ is fixed at 1, 1 bit of information is sufficient to track innova-
tions of the binary variable A perfectly. The column “profit loss” presents seller’s losses in 
comparison with pricing under perfect information - this quantity was evaluated with 
both µ and A simulated according to their stochastic properties. As expected for RIκ, losses 
are higher in more volatile environments.

Results of the similar experiments for RIλ, λ = 0.003, are shown in Table 2 and in Figure 4. 
Unlike RIκ, RIλ generates faster responses to aggregate shocks when µ is more volatile.

Table 2: Implications of idiosyncratic volatility for average responses, λ = 0.003
µ 1st per. adj. 90% adjustment profit loss mean κ
1 8% 25 0.08 0.0086

(0.9,1.1) 22% 17 1.34% 0.014
(0.8,1.2) 60% 12 1.34% 0.86



Acta všfs, 1/2012, vol. 6016

The table also presents average κ that was selected by the seller during the simulations. 
Agents in RIλ choose to process more information when volatility of input cost increases,

Figure 5: Average processed information, µ ∈ (0.9, 1.1), λ = 0.003, t = 0.02

 
The table also presents average κ that was selected by the seller during the simulations. 
Agents in RIλ choose to process more information when volatility of input cost increases, 
 

Figure 5: Average processed information, µ ∈ (0.9, 1.1), λ = 0.003, t = 0.02 

 
 
which increases the marginal value of information. Since a rationally inattentive agent 
processes optimal joint signals about A × µ, then more total information also implies 
moreinformation about A. However, faster average responses do not always mean more 
precise responses - profit loss is the same for µ ∈ (0.9, 1.1) and µ ∈ (0.8, 1.2). The loss 
dropsdramatically when µ is fixed at 1. Input cost becomes a binary variable, therefore, 
the intuition derived from the linear-quadratic approximation does not apply very 
well. 
 
In RIλ , the amount  of processed information is not constant. It varies according to the 
expected value of information given a prior. Figure 5 presents average information 
amount as a function of time. Immediately after the shock occurs, a large fraction of 
sellers realize there might have been a shock and they choose to process more. Later on, 
average selected capacity decreases. Once the transition period is over, the new 
equilibrium information capacity is actually below the initial level - the new average input 
cost is higher and the marginal value of information is thus lower. 
 
1.3.2 Aggregate Volatility 
 
Aggregate volatility can be adjusted by varying the Markov parameter t, the probability 
of transition between the two states. Tables 3 and 4, present characteristics of average 
responses for κ = 1 and λ = 0.003 for four different levels of t. 

 
Table 3: Implications of aggregate volatility for average responses, κ = 1 

 

which increases the marginal value of information. Since a rationally inattentive agent 
processes optimal joint signals about A  × µ, then more total information also implies 
moreinformation about A. However, faster average responses do not always mean more 
precise responses - profit loss is the same for µ ∈ (0.9, 1.1) and µ ∈ (0.8, 1.2). The loss 
dropsdramatically when µ is fixed at 1. Input cost becomes a binary variable, therefore, the 
intuition derived from the linear-quadratic approximation does not apply very well.

In RIλ , the amount of processed information is not constant. It varies according to the ex-
pected value of information given a prior. Figure 5 presents average information amount 
as a function of time. Immediately after the shock occurs, a large fraction of sellers realize 
there might have been a shock and they choose to process more. Later on, average se-
lected capacity decreases. Once the transition period is over, the new equilibrium informa-
tion capacity is actually below the initial level - the new average input cost is higher and 
the marginal value of information is thus lower.

1.3.2	 Aggregate Volatility

Aggregate volatility can be adjusted by varying the Markov parameter t, the probability 
of transition between the two states. Tables 3 and 4, present characteristics of average 
responses for κ = 1 and λ = 0.003 for four different levels of t.
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Table 3: Implications of aggregate volatility for average responses, κ = 1
t 1st per. adj. 90% adjustment profit loss

0.001 56% 18 1.08%
0.002 61% 11 1.09%
0.006 73% 7 1.13%
0.02 80% 4 1.20%

Table 4: Implications of aggregate volatility for average responses, λ = 0.003
t 1st per. adj. 90% adjustment profit loss mean κ

0.001 55% 19 1.34% 0.86
0.002 60% 12 1.34% 0.86
0.006 73% 5 1.35% 0.88
0.02 83% 3 1.35% 0.92

More volatile A generates faster responses to its innovations in both of the models, RIκ 
and RIλ. This is due to a higher marginal value of processing new information about A if 
A is more likely to vary and due to the signal extraction of A from Aµ. When volatility of 
A increases, shocks to Aµ are more likely to be attributed to A. However, unlike in the Lucas’ 
signal extraction of the whole Aµ, profit losses are higher when the aggregate environ-
ment is more volatile. Less stable Aµ is more difficult to be tracked precisely.

The effect of accelerated average adjustment is slightly stronger in RIλ, since higher volatil-
ity provides additional motive for processing more total information.

Volatile aggregate environment generates higher losses and swifter responses and thus 
potentially also a steeper Phillips curve.

1.4 	 Nominal Rigidity Driven by Consumers’ Inattention

In the previous sections, one has to use quite low information capacity, κ, or high cost 
of information, λ, to be able to generate quantitatively realistic rigidities. In many cases, 
low information capacity is not unappealing, consider a local businessmen selling home-
made honey, but corporations such as Microsoft, IBM or GM also set prices rigidly, while 
probably having very good information about economic aggregates. In these cases, it is 
perhaps less likely that nominal rigidities would be driven by information constraints of 
the price-setters. This section shows that consumers’ inattention suffices to generate the 
rigidity.

Consumers often do not realize what a product’s exact price is at the moment of a pur-
chase decision. This is inspired by the observation that some consumers just grab certain 
products in a supermarket without even looking at their prices. Many of us at least read 
price’s first few digits, while ignoring the cents. Typically, we implicitly assume that prices 
end with .95 or .99. If the number of cents is actually 85, we may not spot it and still keep 
our initial guess. Sometimes, we read just the first digit only or none at all.



Acta všfs, 1/2012, vol. 6018

If it is unpleasant, i.e. costly, to inspect prices and if uncertainty about the true price can 
discourage consumption, then sellers could try to accommodate consumers with more 
predictable prices. It might be optimal for the seller not to respond to every minor change 
of input cost. Such frequent price changes would require consumers to pay lots of atten-
tion to the price, and if they did not want to, then they could rather decide to consume 
less.

Rationally inattentive agents learn about new innovations slowly. If there is a shock to an 
aggregate variable and if the seller’s input cost is correlated with this variable, then the 
seller chooses to respond to such a shock gradually - he chooses to price in line with the 
consumer’s expectations.

Imagine a consumer has some partial knowledge about shocks to energy prices. She also 
knows that energy prices are the main determinant of the input cost for her favorite local 
sauna club. The consumer’s expectations about the admission prices to the sauna vary 
with what she knows about the current prices of energy. The sauna owner might postpone 
new price changes until consumers expect them to occur.

1.4.1	 Model

The model has these features:

i)	T he input cost is drawn from a binary distribution in the period 0.
ii)	�T he consumer’s  knowledge of the seller’s  cost evolves independently of the sell-

er’s actions. Knowledge is gradually refined.
iii)	�T he seller’s price is a function of the unit input cost and the time elapsed from the 

initial shock.
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Let us assume that the consumer’s knowledge in period t has the same form as if the 
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is decreasing in t, which models knowledge refinement2. With increasing time, there is 

2	 No sequence of signals across periods is considered, just one signal, which gets tighter in latter periods.
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a higher probability that agents receive the correct signal. Posterior knowledge is thus 
more concentrated.

If A = AH , then the probability that an agent receives the correct signal, (A = AH), is
1 − X (t). The posterior knowledge of an agent having received such a signal is {P(AL) = X 
(t), P(AH) = 1 − X (t)}. The posterior knowledge of agents who received the corrupted signal, 
(A = AL), is {P(AL) = 1 − X (t), P(AH) = X (t)}.

The seller chooses his pricing strategy. Unlike in the earlier sections of this paper, the 
strategy is not a function of the input cost only. The consumer’s knowledge evolves even 
after period 0, when the input cost is kept fixed. Different consumer’s knowledge can im-
ply a different optimal pricing response to the same input cost. The pricing strategy takes 
the form p = p˜(A, {g(A)}) = p˜(A, t), where {g(A)} is the distribution of knowledge3 in the 
population of consumers. {g(A)} is determined by X (t), which is pinned down by time t. 
The strategy can be expressed using two functions, p˜L (t) and p˜H (t), each corresponding 
to one level of unit input cost:

pL (t)  if A = AL, 
p = pH (t)  if A = AH.  ∼

∼

�
(8)
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Definition 1. Model: X (t) is given for all t ∈ {0.∞}; it is a non-increasing function. For each 
t, the seller chooses p˜L (t) and p˜H (t), maximizing the expectation of his profit
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  o
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The expression for expected profit weights the true realizations of AL and AH and also the 

consumer’s priors generated by receiving signals on AL or AH. E[C |t, AL] denotes the 

consumption expectation when a consumer’s prior is determined by a signal pointing to 

AL with a noise level X (t) - the corresponding prior is {g(p˜L (t)), g(p˜L (t))} = {1 −X 

(t), X (t)}. On the other hand, a prior determining E[C |t, AH ] is {1 − X (t), X (t)}.

For each X (t), the numerical  representation of the optimal pricing strategy can be 

found simply by evaluating the expected profit for all combinations of {p˜L (t), p˜H (t)}. 
Let noise decrease at the following rate:

X (t) = 0.5 − 0.05t, ∀t ∈ {0..10}. (10) 

If the realized value is A = AH, then  the seller’s price gradually  increases until it 

reaches  the full information price in period 10. Otherwise, it gradually decreases. For 

2  No sequence of signals across periods is considered, just one signal, which gets tighter in latter 

periods.

�
(9)

3	 It is actually a distribution of distributions.
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If the realized value is A = AH, then the seller’s price gradually increases until it reaches the 
full information price in period 10. Otherwise, it gradually decreases. For simplicity,

Figure 6: Gradual price adjustment, scaled to information amount

let κ = 0. Consumers do not process any additional information about the seller’s price, 
they only use their knowledge about the aggregate variable. If κ > 0, the same optimal 
prices would correspond to higher levels of X.

Figure 6 shows the resulting solution. Consumers possess very little knowledge about A in 
early periods. They know the seller’s pricing strategy, but have difficulties distinguishing 
between the two different values of prices, p˜L (t) and p˜H (t), that can be realized in the 
particular period. If X (t) = 0, consumers always acquire the correct signal, then the seller 
sets the perfect information optimal prices, which are represented by the dash-dotted 
bounds. If X (t) = 0.5, consumers can not tell at all which of the two prices was realized - in 
such a case, the seller chooses to set one price only. Like in the static model, consumers 
consume more when they are less uncertain about prices. With the increasing probability 
of the correct signal, optimal prices p˜L (t) and p˜H (t) are set further and further away from 
each other.
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Figure 6 presents the impulse response of prices to an aggregate cost shock. Although the 
price-setter is perfectly attentive, prices adjust slowly. The more information the consumer 
processes, the faster the prices adjust. This implies that prices adjust faster if, for instance, 
the price makes up for a relatively large portion of the consumer’s budget.

2	 Implications and Conclusions

Most importantly, this paper shows that rational inattention can generate several prop-
erties of price dynamics that are observed in data. We find that prices can change quite 
frequently and yet generate inertial of nominal aggregates, Section 2.3. In data, Bils and 
Klenow (2002); Eichenbaum, Jaimovich, and Rebelo (2008), prices in retail stores stay fixed 
on average for less than 4 months. On the other hand, price level fully responds to an ag-
gregate shock only after at least a year. The presented model reconciles with such findings. 
We thus conclude that rational inattention could provide the proper microfoundations for 
the models of nominal rigidities used in monetary policy.

Moreover, all of the following implications of the presented model agree with the 
evidence.

1) Prices are more flexible in volatile and competitive industries, Sections 2.3.1 and 2.3.1.
2) Prices are more flexible in volatile aggregate environments, Section 2.3.2. 
3) Prices of small-budget products are less flexible, Section 2.4.

What does all this imply? For monetary policy, the findings have three main implications:

The proposed modeling approach based on rational information.1.	
�Monetary policy can become ineffective in stimulating output during crises. We find 2.	
that prices become flexible when the aggregate environment is more volatile. In such 
cases, the price-setters choose to pay more attention to new shocks. Paying more 
attention then implies that prices adjust faster. If prices are flexible, then real effects 
of monetary policy diminish. Unfortunately, this can occur at exactly the times when 
the stimulation of output could be highly desirable.
�Optimal monetary policy should focus on stabilizing the price level. The big question 3.	
in monetary economics is how to balance trade-offs between stabilizing price-level 
and output. Recently, Paciello and Wiederholt (2011) find that when decision- makers 
in firms choose how much attention they devote to aggregate conditions, complete 
price stabilization is optimal also in response to shocks that cause inefficient fluctua-
tions under perfect information. This finding goes in the opposite direction to what 
standard sticky-price models imply. Under sticky-prices, i.e. when explicit adjustment 
costs occur, pure price level stabilization is not optimal in case when mark-up shocks 
or taste shocks occur. Rational inattention thus provides additional reassurance that 
central banks having the price level stabilization as their primary objective, e.g. the 
Czech National Bank, choose the optimal policy objective.

The presented model provides some intuition for implications for fiscal policy too. The 
model we studied, and is formulated in Appendix, is a general setup of responses of inat-
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tentive agents to exogenous shocks. Those shocks can be of non-monetary nature too, 
while most results would still hold.

In 2008 and 2009, policy-makers around the world considered what actions to take to 
stimulate the output and employment as quickly as possible. Rational inattention im-
plies that while the adjustment of the federal funds rate may be ineffective at turbulent 
times, fiscal policy can generate desirable results. This is exactly for the reason that at such 
time agents pay more attention, which weakens the effects of monetary policy, but can 
strengthen effects of fiscal policy.

Lower taxes go sometimes wasted when public does not notice them. During 2008-2009, 
public paid much more attention to business news than usually. This period was thus par-
ticularly receptive to the lowering of income taxes, including the social security payments. 
At the same time, higher consumption taxes were the prime candidate to fill the govern-
ment budget. When noticed, higher consumption taxes increase inflation expectations, 
which only increases current consumption and thus output too.

On the other hand, increased government spending may be far from being the optimal 
action. It is true that effect of such spending would be the quickest, but it might be very 
weak. When agents know about the negative nature of the aggregate shock, then they 
are better aware of the future budget consequences of the current spending and may 
not increase their consumption. In other words, Ricardian equivalence becomes stronger 
during such volatile times.

The model presented in Section 2.4 and its extended version in Matějka (2010b) also pro-
vide a novel framework for quantification of costs of too complicated laws and tax codes. 
It has become common knowledge that complicated tax codes are detrimental. We, how-
ever, still do not know what the proper trade-off between the code’s theoretical optimality 
and the optimal complexity that can be handled by real citizens. The presented model of 
the rationally inattentive consumer has the features needed to tackle the problem: the 
consumer (citizen) finds it complicated to understand all details of the pricing strategy 
(tax code), so the seller (government) chooses to keep the prices more rigid (simpler tax 
code) to accommodate the consumer.

Although, this is mainly a theoretical paper, the potential implications seem important 
enough to further study and develop the theory of rational inattention.
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Appendix: 	 Formulation of Models under Rational Inattention

Response strategy under rational inattention. Let g(Y) be the agent’s prior knowl-edge 
about Y , κ be her information capacity and U (y, z) be the indirect utility function. Her 
decision strategy f (Y, Z ) is a solution to the following maximization problem.
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(12) requires consistency with prior knowledge, agents can not process more information 
simply by forgetting what they knew in advance, and (13) states  non-negativity of a prob-
ability distribution. (14) is the information constraint.

The recursive formulation of the seller’s dynamic problem, a RIκ version, is as follows.
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f (A, µ, p) is a joint distribution summarizing the seller’s choice of signals and responses in 
the given period, (17) is law of motion for knowledge, it generates a prior on A in the fol-
lowing period from a posterior in the current period via a Markov process with the transi-
tion probability t. (18) is the constraint on a prior, µ and A are assumed to be independent.  
g2 (µ) is fixed, g1 (AL ) = x,(19), which implies g1(AH ) = 1 − x. (20) is the traditional constraint 
on mutual information between the source variables µ and A, and a response variable p.




