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 Prediction of Emission Allowances Spot Prices 
Volatility with the Use of GARCH Models
Predikce volatility cen emisních povolenek 

s využitím modelů GARCH
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Abstract
For several years, the system of emission allowances trading has been dealing with a 
crisis mainly due to the falling prices of emission allowances. That said, the partial aim 
of this paper is to create an overview of EUA trading options and acquaint readers with 
the development of the emission allowances price. Another partial aim is to predict the 
volatility of prices of emission allowances with the use of BAU scenario, i.e. without any 
intervention. ARIMA models are used to model the conditional mean value and linear 
ARCH or GARCH models are used to model conditional variance. The uniqueness of this 
paper lies in the fact that there are many expert studies dealing with the prediction of the 
price of allowance but there are only a limited number of scientific studies concerning the 
prediction of volatility which is the crucial element for trading with emission allowances 
on the exchange. Based on these two results the main aim of this article is to show pos-
sible malfunction of EU ETS in future based on the price development of EUA in time and 
on volatility prediction. The results of this study confirm that to predict the conditional 
variance and then volatility, it is adequate to use the cluster model AR(1,8,12)-GARCH(1, 
1) without constant, where in the long-term, the square root of the conditional variance 
inclines towards stable value. Based on the analysis of EUA prices it is obvious that the 
system is not efficient and does not fulfill its purpose. These two partial conclusions sug-
gest that in case of non-intervention of the European Commission the whole mechanism 
may fail.
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Abstrakt
Již několik let se systém obchodování s emisními povolenkami potýká s krizí především 
kvůli klesajícím cenám emisních povolenek. Dílčím cílem tohoto příspěvku je stručně 
popsat možnosti obchodování s emisními povolenkami EUA a seznámit čtenáře s prob-
lematikou vývoje jejich cen. Druhá část textuje věnována predikci volatility cen emisních 
povolenek za předpokladu BAU scénáře, tj. bez jakýchkoliv vnějších zásahů. K modelování 
podmíněné střední hodnoty je využito modelů typu ARIMA, k modelování podmíněného 
rozptylu pak lineárních modelů ARCH potažmo GARCH. Unikátnost článku spočívá ve 
skutečnosti, že existuje mnoho odborných studií zabývající se predikcí ceny povolenky, ale 
vědeckých prací na predikci volatility, která je pro obchodování s emisními povolenkami 
na burze zásadní, je pouze omezený počet. Hlavním cílem je na základě zkoumání vývoje 
cen EUA v čase a predikce volatility poukázat na možnou nefunkčnost EU ETS v budouc-
nu. Výsledky modelování potvrzují, že pro predikci podmíněného rozptylu a následně 
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i volatility je vhodný sdružený model AR(1,8,12)-GARCH(1,1) bez konstanty, přičemž  
v dlouhodobém horizontu inklinuje odmocnina podmíněného rozptylu ke stabilní hodnotě.  
Z analýzy vývoje cen EUA je zřejmé, že systém není efektivní a nesplňuje svůj účel. Z těchto 
dvou dílčích závěrů vyplývá, že v případě neintervenování Evropské komise může dojít  
k selhání celého mechanismu.
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Introduction
The Emissions Trading system (ETS) was launched by European Union in 2005 to create 
a tool that motivates the operators of installations emitting greenhouse gases to using 
more efficient technologies and reduce the amount of emissions. The aim of the EU ETS 
is to ensure that emissions reduce at the lowest cost by creating and trading emission 
allowances (EUA - European Emission Allowances). Böhringer and Lange (BÖHRINGER, 
2005) indicate that the objectives of economic efficiency and free allocation of emission 
allowances are incompatible with the harmonized allocation rules to prevent distortions 
of competition. At the same time also shows that Member States have not implemented 
the optimal allocation in the first trading period 2005-2007. Therefore, the use of flexible 
mechanisms of the Kyoto Protocol, an international emissions trading, the Clean Devel-
opment Mechanism (CDM) and Joint Implementation (JI), becomes an important issue.

In recent years, a number of empirical studies that deal with examining the price of emis-
sion allowances mainly from an econometric perspective grows. Among the authors of 
these studies are e.g. Daskalakis et al. (DASKALAKIS, 2005), and Paolella Taschini (PAOLEL-
LA, 2006); Seifert et al. (SEIFERT, 2008), Uhrig-Homburg and Wagner (UHRIG-HOMBURG, 
2006) and others. While Uhrig-Homburg and Wagner (2006) focus mainly on derivatives 
of emission allowances, Seifert et al. (2008) developed a stochastic equilibrium model to 
reflect the most important parameters of the EU ETS and analyzed the resulting dynamics 
of the spot price of CO2. 

There is a number of studies to predict the price of emission allowances for the third pe-
riod. Daily and Bond-Smith (BOND-SMITH, 2010) summarized most of the existing models 
for predicting the price of allowances into two categories. The first category, “bottom-up” 
models, which typically do not provide feedback between developments in individual 
markets and the rest of the economy and cannot even simulate links between individual 
markets. Assumption of these models is that the market price of emission allowances 
equals to the unit cost of emissions reductions in a competitive market. 

The second set of models is called a “bottom down”, which are models describing the 
system from the top to the bottom. They are relatively complex, mostly dealing with 
economy as a whole and are usually based on aggregate sector data. In recent years there 
have been approaches that try these two methodological approaches to integrate into  
a single framework of general equilibrium. Böhringer and Rutherford (BÖHRINGER, 2009) 
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first directly integrate “bottom-up” and “top-down” description of the economic system 
in the so-called hybrid integrated model.

Models of volatility were first described by American economist F. Robert Engle (ENGLE, 
1982) in 1982. He devised a model that should characterize the conditional heteroscedas-
ticity of the stochastic process, for which he was awarded the Nobel Prize in economics in 
2003. Models of volatility are, unlike other models of time series, dealing with modeling 
of random component based on the conditional variance. Among the basic linear models 
are ARCH and GARCH (FEDDERKE, 2003), (POPELKA, 2007). These are further described 
in the following text. 

Benz and Truck (TRUCK, 2009) investigated the prediction of the price of allowance with 
the use of ARCH or GARCH models by analyzing the prediction from sample data and by 
comparing the results with alternative approaches. In this model, the conditional vari-
ance of time series is represented by the weighted sum of squares from previous observa-
tions. At the same time, they use Markov-switching model for the analysis of spot prices 
of carbon dioxide emissions to capture the heteroscedasticity of the time series. Their 
findings confirm that AR—GARCH models are effective when modeling the short-time 
conduct. Another analysis of price and the data of returns from emission allowances were 
carried out with the use of GARCH model in the study of Taschini and Paolella (PAOLELLA, 
7/2007). These authors analyzed spot prices of one ton of SO2 from 4. 1. 1999 to 16. 5. 
2006. The source of the spot price of one ton of SO2 was the Chicago Climate Exchange. 
Taschini and Paolella used only with 454 values for CO2 when working on the study. It is 
necessary to note that both of these studies were primarily focused on the prediction of 
prices and not on the volatility issues.

The partial aim of this paper is to create an overview of EUA trading options and the 
development of the emission allowances price. This will be followed by predicting the 
volatility of prices of emission allowances with the use of BAU scenario, i.e. without any 
intervention. Based on that, the main aim of this article is to show possible malfunction 
of EU ETS in future based on the price development of EUA in time and on volatility 
prediction

1 EU ETS Trading and its Effectiveness

Emission allowance is an “asset corresponding to the right of the operator to emit one 
ton of CO2” (Act no. 383/2012 Coll., § 2, letter t). This emission allowance enables pollut-
ers to sell them to each other. All companies (industry and energy) have been receiving 
emission allowances for free based on historical emissions; in the second trading period 
2008-2012 it is a total of 86.8 mil. allowances annually for the Czech Republic. In the third 
period, ie. since 2013, there is a revision of the system, part of the allowances is allocated 
to facilities for free (based on benchmarking or on historical emissions) and the remainder 
is available to buy via auction.

In the years 2013-2020 the Czech Republic will have a total of 645 mil. of allowances; 
342 mil. of allowances (54%) will be auctioned and 303 mil. of allowances (46%) will be 
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allocated to the Czech industry for free. By 2020 electricity producers will have received 
a total of 107.8 mil. of allowances for free, the rest they will have to buy (EUROPEAN COM-
MISSION, 2012).

Emissions trading can be done in several ways: currently daily futures are the most traded 
on London's financial and commodity exchange Intercontinental Exchange (ICE), but the 
emission allowances can also be purchased through forward contracts or direct sales.

ICE is the largest global network of exchanges and clearing houses for financial and com-
modity markets. ICE owns and manages 23 regulated exchanges. ICE Futures is the main 
market for emission allowances. ICE Futures products meet the requirements of the Euro-
pean Union Emissions Trading System. In April 2010, ICE acquired the European Climate 
Exhange (ECX). The first emission allowances were offered by the European Climate Ex-
change, founded in 2005, which stated emission products trading platform ICE Futures 
Europe.

The EU ETS was launched in early 2005 in order to control CO2 emissions-intensive sec-
tors (e.g. Electricity generation and heavy industry). System is, however, struggling with 
inefficiencies due to low prices per ton of discharged greenhouse gases. After its begin-
ning in 2005, the price of an allowance was € 30, which was according to the European 
Commission (EC) an expected price. The price, however, dropped as soon as possible due 
to the fact that the states requested an excessive amount of allowances during the prepa-
rations. This should have been changed during the second phase of trading (2008-2012). 
The EC demanded by some states to redo their National Action Plans (NAPs) in which 
they requested an excessive amount of allowances. Thanks to the price rose above € 20 
per allowance. However, the economic crisis of 2008 caused an increase in the amount of 
allowances and their price dropped again. Currently, the value of allowances is - despite 
other measures taken by EC- far below the price that would encourage the European Com-
mission to modernize installations emitting greenhouse gases again.

The price of emission allowances is currently around 5 euros per ton. This is much less than 
originally expected. Predictions in 2015 anticipated the end of last year to levels around 
8.50 to 9 euros. Although two partial reforms, which should stabilize the market, were ap-
proved the price of allowances remains under pressure and react very strongly to prices of 
energy commodities. The break of the long-term trend of increasing prices of allowances 
took place on 11th December last year. After a slow recovery the price was finally closed 
in 2015 at 8.29 euros. However, in early 2016 a sharp downward trend continued. Since 
the beginning of this year, the allowance price fell by more than 40%.

There is a number of causes for the sharp price decline including speculators, interna-
tional politics, or economics. Allowance is also part of the energy complex and as such it 
is related to the price of oil or electricity, and can be influenced even by such a thing as 
above-average temperatures as heating plant will not need so many emission allowances 
to fulfill their legal obligations. 
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2 Methodology

In this paper, we analyzed the time series of emission allowance spot prices for the period 
from 1. 1. 2008 to 31. 12. 2013. This period was chosen on purpose as it covers the whole 
second phase of ETS trading. The data contain values of allowances prices on the stock 
exchange for trading days, i.e. in the majority of the data set these are mostly prices from 
Monday to Friday. In total, there are 1521 observations in the data set. The most frequent 
value (modus) is 12.336 EUR/EUA. The minimal value of the price for the period of observa-
tion is 2.7 EUR/EUA and the maximum value is 28.3 EUR/EUA.

Given that financial data are very often characterized by high volatility, it is necessary to 
test the model for ARCH effect, i.e. presence of conditional heteroscedasticity. Regarding 
heteroscedasticity, it is a situation where the condition of finite and constant variance of 
random components is violated. The following model illustrates the conditional hetero-
scedasticity:

(𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡−1)2 = 𝛼𝛼𝛼𝛼 + ρ (𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡−1 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡−2)2 + 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 (1)
where Xt, Xt- represent values in the time series when time t is changed by one unit. The 
parameter 𝛼𝛼𝛼𝛼 is calculated by the method of the smallest squares and 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 is a random 
component. If the parameter ρ (regressive parameter) is equal to zero, we cannot talk about 
heteroscedasticity.
When constructing the model of ARCH type, we face a major problem of choosing the model 
order. The common procedure for determining the order of ARCH type models is that at first 
a model of low order is estimated and then is this model modified for instance according to 
the results of statistic significance of the parameters or according to the analysis of 
standardized residuals. In the great majority of cases, low order models are sufficient, for 
instance: ARCH(1), ARCH(2) or GARCH(1,1), GARCH(2,1) etc.
For some time series, the high order is necessary to model volatility with the use of ARCH 
model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
(1,1) model of the conditional variance is in the form of:
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
labeled as GARCH(1,1) and it can be used where it would be appropriate to choose ARCH 
model with many delays.
To describe the idea of GARCH models more closely, we rewrite the equation (2) as follows:
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The conditional variance in this form is then equal to the weighted sum of the variance ht−1 
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α measures the impact of this shock on the prediction for the next period, (α+β) represents 
the rate at which the shock effect will vanish in the following period. The closer is (α+β) to 
one, the longer time it takes to remove the shock.

If we add 2
tε to the both sides of the model (2) and subtract ht, this model may be rewritten 

to the form of ARMA(1,1) model: 
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 
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order. The common procedure for determining the order of ARCH type models is that at first 
a model of low order is estimated and then is this model modified for instance according to 
the results of statistic significance of the parameters or according to the analysis of 
standardized residuals. In the great majority of cases, low order models are sufficient, for 
instance: ARCH(1), ARCH(2) or GARCH(1,1), GARCH(2,1) etc.
For some time series, the high order is necessary to model volatility with the use of ARCH 
model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
(1,1) model of the conditional variance is in the form of:
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
labeled as GARCH(1,1) and it can be used where it would be appropriate to choose ARCH 
model with many delays.
To describe the idea of GARCH models more closely, we rewrite the equation (2) as follows:
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The conditional variance in this form is then equal to the weighted sum of the variance ht−1 

predicted in the previous period and the unexpected previous shock 1
2

1 −− − tt hε . The parameter 
α measures the impact of this shock on the prediction for the next period, (α+β) represents 
the rate at which the shock effect will vanish in the following period. The closer is (α+β) to 
one, the longer time it takes to remove the shock.

If we add 2
tε to the both sides of the model (2) and subtract ht, this model may be rewritten 

to the form of ARMA(1,1) model: 

11
2

111
2 )( −− −+++= tttt νβνεβαωε , (4)
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 

                    (2)

The conditions 
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standardized residuals. In the great majority of cases, low order models are sufficient, for 
instance: ARCH(1), ARCH(2) or GARCH(1,1), GARCH(2,1) etc.
For some time series, the high order is necessary to model volatility with the use of ARCH 
model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
(1,1) model of the conditional variance is in the form of:
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
labeled as GARCH(1,1) and it can be used where it would be appropriate to choose ARCH 
model with many delays.
To describe the idea of GARCH models more closely, we rewrite the equation (2) as follows:
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1 −− − tt hε . The parameter 
α measures the impact of this shock on the prediction for the next period, (α+β) represents 
the rate at which the shock effect will vanish in the following period. The closer is (α+β) to 
one, the longer time it takes to remove the shock.

If we add 2
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 
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standardized residuals. In the great majority of cases, low order models are sufficient, for 
instance: ARCH(1), ARCH(2) or GARCH(1,1), GARCH(2,1) etc.
For some time series, the high order is necessary to model volatility with the use of ARCH 
model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
(1,1) model of the conditional variance is in the form of:
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
labeled as GARCH(1,1) and it can be used where it would be appropriate to choose ARCH 
model with many delays.
To describe the idea of GARCH models more closely, we rewrite the equation (2) as follows:
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α measures the impact of this shock on the prediction for the next period, (α+β) represents 
the rate at which the shock effect will vanish in the following period. The closer is (α+β) to 
one, the longer time it takes to remove the shock.

If we add 2
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 



ACTA VŠFS, 1/2016, vol. 10 B71

To describe the idea of GARCH models more closely, we rewrite the equation (2) as follows:

(𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡−1)2 = 𝛼𝛼𝛼𝛼 + ρ (𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡−1 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡−2)2 + 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 (1)
where Xt, Xt- represent values in the time series when time t is changed by one unit. The 
parameter 𝛼𝛼𝛼𝛼 is calculated by the method of the smallest squares and 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 is a random 
component. If the parameter ρ (regressive parameter) is equal to zero, we cannot talk about 
heteroscedasticity.
When constructing the model of ARCH type, we face a major problem of choosing the model 
order. The common procedure for determining the order of ARCH type models is that at first 
a model of low order is estimated and then is this model modified for instance according to 
the results of statistic significance of the parameters or according to the analysis of 
standardized residuals. In the great majority of cases, low order models are sufficient, for 
instance: ARCH(1), ARCH(2) or GARCH(1,1), GARCH(2,1) etc.
For some time series, the high order is necessary to model volatility with the use of ARCH 
model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
(1,1) model of the conditional variance is in the form of:
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
labeled as GARCH(1,1) and it can be used where it would be appropriate to choose ARCH 
model with many delays.
To describe the idea of GARCH models more closely, we rewrite the equation (2) as follows:

)()( 1
2

1111
2

11 −−−−− −+++=++= tttttt hhhh εαβαωβεαω (3)

The conditional variance in this form is then equal to the weighted sum of the variance ht−1 

predicted in the previous period and the unexpected previous shock 1
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1 −− − tt hε . The parameter 
α measures the impact of this shock on the prediction for the next period, (α+β) represents 
the rate at which the shock effect will vanish in the following period. The closer is (α+β) to 
one, the longer time it takes to remove the shock.

If we add 2
tε to the both sides of the model (2) and subtract ht, this model may be rewritten 

to the form of ARMA(1,1) model: 
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 
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component. If the parameter ρ (regressive parameter) is equal to zero, we cannot talk about 
heteroscedasticity.
When constructing the model of ARCH type, we face a major problem of choosing the model 
order. The common procedure for determining the order of ARCH type models is that at first 
a model of low order is estimated and then is this model modified for instance according to 
the results of statistic significance of the parameters or according to the analysis of 
standardized residuals. In the great majority of cases, low order models are sufficient, for 
instance: ARCH(1), ARCH(2) or GARCH(1,1), GARCH(2,1) etc.
For some time series, the high order is necessary to model volatility with the use of ARCH 
model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
(1,1) model of the conditional variance is in the form of:
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
labeled as GARCH(1,1) and it can be used where it would be appropriate to choose ARCH 
model with many delays.
To describe the idea of GARCH models more closely, we rewrite the equation (2) as follows:
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1 −− − tt hε . The parameter 
α measures the impact of this shock on the prediction for the next period, (α+β) represents 
the rate at which the shock effect will vanish in the following period. The closer is (α+β) to 
one, the longer time it takes to remove the shock.

If we add 2
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to the form of ARMA(1,1) model: 
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 
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model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
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one, the longer time it takes to remove the shock.

If we add 2
tε to the both sides of the model (2) and subtract ht, this model may be rewritten 

to the form of ARMA(1,1) model: 

11
2

111
2 )( −− −+++= tttt νβνεβαωε , (4)

where νt = tt h−−
2

1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
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It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
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model which is generalized by adding the influence from previous volatility values. The 
resulting model is called GARCH model (GARCH - generalized autoregressive conditional 
heteroscedastic). GARCH models the movements of the conditional variance of residues and 
thus the following prediction of volatility is at the same time the prediction of the variance.
By extending the ARCH(1) model by conditional variance in the first delay, the GARCH 
(1,1) model of the conditional variance is in the form of:
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The conditions ω > 0, α1> 0 a β1 ≥ 0 ensure the positive conditional variance. Model (8) is 
labeled as GARCH(1,1) and it can be used where it would be appropriate to choose ARCH 
model with many delays.
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α measures the impact of this shock on the prediction for the next period, (α+β) represents 
the rate at which the shock effect will vanish in the following period. The closer is (α+β) to 
one, the longer time it takes to remove the shock.

If we add 2
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 
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1ε .If α1 + β1< 1, then it follows from the equation that GARCH(1,1) model 
is stationary in covariations. The unconditional variance of the process {εt} is in the form of:
var(εt) = ω / (1 − α1− β1) (5)
It is therefore constant in time and the process {εt} is unconditionally homoscedastic.
The number of model parameters for GARCH(1,2), GARCH(2,1), GARCH(2,2) can be 
gradually increased. This procedure is recommended by Tsay (TSAY, 2002). Overall, all 
GARCH models and their specifications are very efficient in the modeling of volatility. 
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subtracting the diameter from estimated residues and then divide this difference by the 
standard deviance. Other method of proving the model validity for the specific time series 
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3 Prediction of Volatility

The time series of EUA prices was tested for the presence of the unit root with the help of 
the Dickey Fuller test, which was performed for the scenarios with a constant, without a 
constant and with a constant and a trend. The model with a constant appears to be the 
most adequate. Its conclusion is that for the given number of observations and the reli-
ability value, we cannot reject the null hypothesis of the unit root existence, i.e. it is not 
the stationary time series, in other words, we may assume that the equation is in the first 
differences (Figure 1). This prerequisite was verified with the help of the autocorrelation 
and partial-autocorrelation function (ACF and PACF).
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Figure 1:  Differentiated time series of EUA (EUR/EUA) prices

The final phase of the construction of the volatility model is the verification of the adequacy 
of the chosen model based on standardized residues. These are obtained by subtracting the 
diameter from estimated residues and then divide this difference by the standard deviance.
Other method of proving the model validity for the specific time series is testing of the non-
systematic component – these are specifically tests of autocorrelation and conditional 
heteroscedasticity (for instance Ljung-Box Q-test, ARCH-LM test or GARCH-LM test.)

3 Prediction of volatility

The time series of EUA prices was tested for the presence of the unit root with the help of 
the Dickey Fuller test, which was performed for the scenarios with a constant, without a 
constant and with a constant and a trend. The model with a constant appears to be the most 
adequate. Its conclusion is that for the given number of observations and the reliability value,
we cannot reject the null hypothesis of the unit root existence, i.e. it is not the stationary time 
series, in other words, we may assume that the equation is in the first differences (Figure 1). 
This prerequisite was verified with the help of the autocorrelation and partial-autocorrelation 
function (ACF and PACF).
Figure 1: Differentiated time series of EUA (EUR/EUA) prices
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The prerequisite of the normal distribution of residues is also important for the model. We 
test this prerequisite in our model. After we differentiated the data, we investigated their 
empirical distribution (see Figure 2 of the frequency distribution of residues).
Figure 2: Graph of the frequency distribution of residues

Source: own calculations

The prerequisite of the normal distribution of residues is also important for the model. We 
test this prerequisite in our model. After we differentiated the data, we investigated their 
empirical distribution (see Figure 2 of the frequency distribution of residues).

Figure 2:  Graph of the frequency distribution of residues

Source: own calculations

The data show the leptokurticity. This signifies that there are relatively many observations 
around the diameter and relatively many observations further from the diameter. The center 
of the histogram has a high peak and the tails are relatively larger in comparison with the 
normal distribution, i.e. there is a high probability value on the mean value and not 
insignificant probability of the remote observations (the distribution with the narrow waist 
and heavy ends). From above mentioned information follows that the distribution of residues 
is not in a normal nature, however, due to the sufficient number of observations, it can be 
assumed, based on the central limit theorem, that the normality prerequisite is fulfilled.
To predict the volatility, it is at first necessary to model the conditional mean value with the 
use of models AR, ARMA, or ARIMA. Predictions of, for instance financial assets prices,
are very often made based on the models of the conditional mean value. In our case, we 
indentified the ARIMA [(1,8,12),1,1] model without a constant, which met the requirement 
for the minimum AIC, significant p-value and was then tested by ACF and PACF. The 
results of the model are shown in Table 1.

Table 1: The output of ARIMA [(1,8,12),1,1] model without a constant

ARIMA [(1,8,12),1,1] 
model without a constant coefficient direct. error z p-value

phi_1 -0.282922 0.136861 -2.067 0.0387   **

Source: own calculations
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The data show the leptokurticity. This signifies that there are relatively many observations 
around the diameter and relatively many observations further from the diameter. The 
center of the histogram has a high peak and the tails are relatively larger in comparison 
with the normal distribution, i.e. there is a high probability value on the mean value and 
not insignificant probability of the remote observations (the distribution with the narrow 
waist and heavy ends). From above mentioned information follows that the distribution of 
residues is not in a normal nature, however, due to the sufficient number of observations, 
it can be assumed, based on the central limit theorem, that the normality prerequisite is 
fulfilled.

To predict the volatility, it is at first necessary to model the conditional mean value with 
the use of models AR, ARMA, or ARIMA. Predictions of, for instance financial assets prices, 
are very often made based on the models of the conditional mean value. In our case, we 
indentified the ARIMA [(1,8,12),1,1] model without a constant, which met the requirement 
for the minimum AIC, significant p-value and was then tested by ACF and PACF. The results 
of the model are shown in Table 1.

Table 1: The output of ARIMA [(1,8,12),1,1] model without a constant

ARIMA [(1,8,12),1,1]
model without a constant

coefficient direct. error z p-value

phi_1 -0.282922 0.136861 -2.067  0.0387   **

phi_8 0.0788961 0.0244957 3.221  0.0013   ***

phi_12 -0.0881966 0.0251873 -3.502  0.0005   ***

theta_1 0.391545 0.132915 2.946  0.0032   ***

Akaik’s criterion 773.1933

Source: own calculations (SW Gretl)

The detection of heteroscedasticity follows after the initial modeling. Table 2 confirms 
the presence of ARCH effect as the p-value is almost zero. We therefore reject the null 
hypothesis and the heteroscedasticity is thus present in the model. Based on this result 
we can model the volatility of the time series.

Table 2: Test for ARCH of the 1. order

ARCH of the 1. order coefficient direct. error z p-value

α0 0.0832518 0.00640715 12.99 1.11e-036 ***

α1  0.137696 0.0254225 5.416  7.07e-08 ***

Null hypothesis: There is no ARCH effect
Test statistics: LM = 28.8177 
P-value = P(χ2(1) > 28.8177) = 7.95222e-008

Source: own calculations
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The choice of the ARCH and GARCH model order follows next (Table 3 + Table 4).

Table 3: ARCH models

ARCH(q) coefficient z p-value log-likelihood AIC

ARCH(1)
α0 0.0768978 20.87 1.08e-096 ***

-363.0074 732.0149
α1 0.251373 5.58 2.31 e-08  ***

ARCH(2)

α0 0.0529628 15.39 1.97 e-053 ***

-307.1594 622.3189α1 0.2739 5.82 5.75 e-09  ***

α2 0.266806 6.3 2.97e-010 ***

ARCH(3)

α0 0.0459722 14 1.51e-044 ***

-284.7905 579.5811
α1 0.168519 4.04 5.33 e-05  ***

α2 0.209461 5.301 1.15 e-07  ***

α3 0.214541 4.56 4.90 e-06  ***

ARCH(4)

α0 0.0377719 12.88 6.02e-038 ***

-253.4524 518.9049

α1 0.125875 3.535 0.0004     ***

α2 0.173518 4.817 1.46e-06 ***

α3 0.165081 4.103 4.08 e-05  ***

α4 0.202664 5.259 1.45 e-07  ***

Source: own calculations

According to Gretl calculations, the best model is ARCH (4) with the lowest Akaike’s crite-
rion (AIC) and the highest Log-likelihood. Looking at p-values we can see that all of these 
are significant on the 5% significance level.

Despite this, AIC is too high; therefore we proceed to the next phase where we estimate 
the conditional variance with the use of GARCH model. We have tested all the possible 
combinations of GARCH(p,q) if p = 1,2 a q = 1,2, with or without constant. We can conclude 
that GARCH(1,1) is the best choice, see Table 4. GARCH(1,2), GARCH(2,1) and GARCH(2,2) 
have higher AIC values and some of their parameters are not significant at all. GARCH with 
a constant was constructed only for orders p=1, q=1 a p=1, q=2. Due to the fact that in 
every case the constant was insignificant and the information criteria higher than when 
modeling without constant, other variations of GARCH order with a constant were not 
further investigated.
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Table 4: GARCH models

GARCH(p,q) coefficient z p-value log-likelihood AIC

GARCH(1,1)

α0 0.001385 3.414 0.0006  ***

-188.4058 384.8117α1 0.115714 6.543 6.01e-011 ***

β1 0.876846 53.63 0.0000  ***

GARCH(1,2)

α0 0.001549 3.172 0.0015  ***

-188.0793 386.1586
α1 0.095076 3.26 0.0011  ***

α2 0.028903 0.8291 0.4071

β1 0.867491 41.92 0.0000  ***

GARCH(2,1)

α0 0.001382 3.133 0.0017  ***

-188.4063 386.8126
α1 0.116201 4.404 1.06e-05 ***

β1 0.876533 3.773 0.0002  ***

β2 4.26E-11 2.01E-10 1

GARCH(2,2)

α0 0.002797 3.483 0.0005 ***

-186.6285 385.257

α1 0.096813 4.654 3.26e-06 ***

α2 0.135699 5.496 3.88e-08 ***

β1 1.13E-12 1.20E-11 1

β2 0.75411 8.307 9.83e-017 ***

GARCH(1,1) 
with con-

stant

const. 0.001694 0.2866 0.7744

-188.3648 386.7296
α0 0.001385 3.413 0.0006 ***

α1 0.115922 6.549 5.80e-011 ***

β1 0.87668 53.62 0.0000 ***

GARCH(1,2) 
with con-

stant

const. 0.002234 0.377 0.7062

-188.0101 388.0202

α0 0.001556 3.18 0.0015 ***

α1 0.094413 3.248 0.0012 ***

α2 0.030236 0.8662 0.3864

β1 0.866852 41.79 0.0000 ***

Source: own calculations

Both the ARCH and GARCH coefficients (0.115714 and 0.876846) are statistically significant.

The sum of these coefficients is 0.99256 which means that the shock to fluctuations affect 
conditional variations. If α1 + β1 was equal to 1, we would use the integrated GARCH (1,1), 
so called IGARCH (1,1).
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From the program R for AR(1,8,12)-GARCH(1,1) model application, we obtained the fol-
lowing conditional variation of allowances prices (6). After extraction, we can follow the 
development of the time series volatility of the prices of emission allowances (Figure 3).

From the program R for AR(1,8,12)-GARCH(1,1) model application, we obtained the 
following conditional variation of allowances prices (6). After extraction, we can follow the 
development of the time series volatility of the prices of emission allowances (Figure 3).

ht = 0.001385 + 0.115714 2
1−tε + 0.876846ht-1 (6)

Figure 3: Prediction returns and volatility of emission allowance prices

Source: own calculations (SW Rl)

Given the long-term horizon of the prediction, the allowance price is relatively stable (the 
analysis is performed through BAU scenario), therefore is its volatility low. Verification
(model diagnostics) is performed on the basis of obtained standardized residues. For testing 
standardized residues, we use the same tests as for the logarithmic returns (ACF, PACF, Box 
- Pierce and Ljung - Box test a subsequently testing of normality) with the difference of 
applying these tests on other data, i.e. instead of the logarithmic returns, we apply the data
to the standardized residues obtained from parameter estimations. The un-correlation was 
checked by the selective autocorrelation function of standardized residues.
Figure 4: Testing the autocorrelation: standardized residues ACF and PACF of GARCH 
(1,1) model
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Figure 4: Testing the autocorrelation: standardized residues ACF and PACF of GARCH (1,1) 
model

Source: own calculations

From Figure 4 follows that the models of mean value and also of conditional variance were 
chosen adequately but the conditional heteroscedasticity could not be removed completely.
More significant values remain in points of 26 multiples. This fact might be removed by 
modification of GARCH model to P-GARCH for modeling the seasonality in volatility. This 
model is discussed by for instance Alan Bester (BESTER, 1999).

Conclusions
The European Emissions Trading System suffers from a long-termexcess of allowances. 
After complicated and lengthy negotiations a two-phase reform was introduced in order to 
improve the functionality and stabilize the price. First, in the context of backloading, the 
volume of EUAs sold at auctions in the years 2014 to 2016 was reduced by 900 million 
euros. Later, Market Stability Reserve was approved, but the excess of allowances will not 
begin to be disposed of until 2019.
The second part of this paper contains the methodology of modeling the volatility with the 
use of ARCH and GARCH models. Then we modeled the cluster model AR(1,8,12)-
GARCH(1,1), the output of which is the detection of the conditional variance. The model 
was verified and we can conclude that model thus identified is adequate for predicting the 
volatility of the prices of emission allowances.
The results of this study confirm that to predict the conditional variance and then volatility, 
it is adequate to use the cluster model AR(1,8,12)-GARCH(1,1) without constant, where in 
the long-term, the square root of the conditional variance inclines towards stable value.
However, we also have to bear in mind that the market with emission allowances is 
characterized by the fact that it is a market with artificially created demand. It is also 
important to mention that several artificial shocks caused by the administration occurred 
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removed by modification of GARCH model to P-GARCH for modeling the seasonality in 
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Conclusions  

The European Emissions Trading System suffers from a long-termexcess of allowances. 
After complicated and lengthy negotiations a two-phase reform was introduced in order 
to improve the functionality and stabilize the price. First, in the context of backloading, 
the volume of EUAs sold at auctions in the years 2014 to 2016 was reduced by 900 million 
euros. Later, Market Stability Reserve was approved, but the excess of allowances will not 
begin to be disposed of until 2019.

The second part of this paper contains the methodology of modeling the volatility with 
the use of ARCH and GARCH models. Then we modeled the cluster model AR(1,8,12)-
GARCH(1,1), the output of which is the detection of the conditional variance. The model 
was verified and we can conclude that model thus identified is adequate for predicting 
the volatility of the prices of emission allowances.

The results of this study confirm that to predict the conditional variance and then volatil-
ity, it is adequate to use the cluster model AR(1,8,12)-GARCH(1,1) without constant, where 
in the long-term, the square root of the conditional variance inclines towards stable value.



ACTA VŠFS, 1/2016, vol. 1078

However, we also have to bear in mind that the market with emission allowances is char-
acterized by the fact that it is a market with artificially created demand. It is also important 
to mention that several artificial shocks caused by the administration occurred during 
the period examined in this paper which could have some influence on the price of the 
emission allowances.

The aim of this paper was to assess possible dysfunctions of the system in the future 
based on examining the effectiveness of the EU ETS and the prediction of volatility in 
spot prices. The results confirm that for predicting conditional variance and subsequent 
volatility cluster model AR(1,8,12)-GARCH(1,1) without constant is the most suitable, while 
the root conditional variance tends to lean to a stable value in the long run. Volatility is 
very low, because the model works with the BAU scenario, where significant shocks are 
not recorded.

However, from the viewpoint of stability, 5-6 EUR/EUA is not sustainable. We can expect a 
slight growing of prices, but not sooner than in three years and in the meantime (without 
the intervention of the Commission), the price will change minimally as stated in the arti-
cle. This situation could even bring an irreversible destruction of the system.
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