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Abstract 
 

A supply chain is a complex and dynamic supply and demand network 

of agents, activities, resources, technology and information involved in 

moving products or services from supplier to customer. The suitability of 

supply chains can be measured by multiple criteria, such as environmental, 

social, economic, and others. Finding an equilibrium between the interests 

of members of a sustainable supply chain is a very important problem. 

The main objective of the paper is to analyze the design of sustainable 

supply chains and to create a comprehensive model and solution methods 

for designing sustainable supply chains. Multiple criteria analysis and 

game theory is a natural choice to effectively analyze and model decision 

making in such multiple agent situation with multiple criteria where the 

outcome depends on the choice made by every agent. Multiple criteria 

analysis is useful for assessing sustainability of supply chains. The De 

Novo approach focusses on designing optimal systems. Game theory has 

become a useful instrument in the analysis of supply chains with multiple 

agents. Games are used for behavior modeling of supply chains; they focus 

on the allocation of resources, capacities, costs, revenues and profits. The 

co-opetition concept combines the advantages of both competition and 

cooperation into new dynamics, which can be used to not only generate 

more profits, but also to change the nature of the business environment for 

the benefit of users. 
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1 Introduction 
 

Supply chain management is a philosophy that provides the tools and techniques 

enabling organizations to develop strategic focus and achieve sustainable 

competitive advantage (Simchi-Levi et al., 2008). This philosophy presents 

management with a new focus and way of thinking about the existence and 

workings of the organization in a wider business environment. Supply chain 

management is now seen as a governing element in strategy and as an effective 

way of creating value for customers.  

The evolution of supply chain management recognized that a business 

process consists of several decentralized firms and that decisions of these 

different units impact each other’s performance, and thus the performance of the 

whole supply chain. Each unit attempts to optimize his own preference. 

Behavior that is locally efficient can be inefficient from a global point of view. 

Sustainability in supply chain management has become a highly relevant topic 

for researchers and practitioners (Brandenburg et al., 2014; Carter and Rogers, 

2008; Seuring, 2013). The objective of supply chain sustainability is to create, 

protect and grow long-term environmental, social and economic value for all 

stakeholders involved in bringing products and services to market.  

The main objective of the paper is to analyze the design of sustainable supply 

chains and to create a comprehensive model and solution methods for designing 

sustainable supply chains. Multicriteria analysis and game theory tools are  

a natural choice for modeling and effective analysis of decision making in  

a situation with multiple criteria and multiple agents, where the outcome 

depends on the choice of each agent. Multiple criteria analysis is useful for 

assessing sustainability of supply chains. Game theory has become a useful 

instrument in the analysis of supply chains with multiple agents, often with 

conflicting objectives.  

Standard multiple criteria approaches focus on valuation of already given 

systems. The De Novo approach focusses on designing optimal systems (Zelený, 

2010). The approach is based on reformulation of the problem by given prices  

of resources and the given budget. Searching for a better portfolio of resources 

leads to a continual reconfiguration and reshaping of systems boundaries.  

The De Novo approach was adapted for supply chain design. Current business 

conditions are changing rapidly. New products are evolving faster. Technological 

innovations bring improvements to the criteria and a better utilization of 

available resources. This dynamics must be included in the new models. These 

changes can lead beyond trade-off-free solutions.  



         P. Fiala, R. Majovská 

 

46 

The search for equilibrium in supply chains is a very important problem. 

Games are used for behavior modeling of supply chains; they focus on allocation 

of resources, capacities, costs, revenues and profits (Kreps, 1991; Cachon and 

Netessine, 2004). There are numerous opportunities to create hybrid models that 

combine competitive and cooperative behavior. The co-opetition concept 

combines the advantages of both competition and cooperation into new dynamics, 

which can be used to not only generate more profits, but also to change the nature 

of the business environment for the benefit of users (Brandenburger and Nalebuff, 

2011). Searching for relationships with complementors (competitors whose 

products add value to other agents) brings ever new opportunities that bring added 

values. The co-opetition is based on the biform game theory (Okura and Carfi, 

2014). Biform games combine non-cooperative and cooperative approaches of the 

traditional game theory and are promising for modeling behavior of the agents in 

supply chains (Brandenburger and Stuart, 2007). The authors propose to divide the 

biform games into so-called sequential and simultaneous shapes. The proposed 

procedure captures these concepts; it is flexible and open to other concepts and 

procedures for designing sustainable supply chains. 

 

2  Sustainable supply chain 
 

A supply chain is a complex and dynamic supply and demand network of agents, 

activities, resources, technology, and information involved in moving a product or 

service from the initial supplier to the ultimate customer (Tayur, Ganeshan and 

Magazine, eds., 2012; Snyder and Shen, 2011; Harrison, Lee and Neale, 2003).  

A supply chain consists of several decentralized firms; decisions of these different 

units impact each other’s performance, and thus the performance of the whole 

supply chain.  

A supply chain is defined as a network system that consists of clusters with: 

 suppliers,  

 manufacturers,  

 distributors,  

 retailers,  

 customers, 

where: 

 material,  

 financial, 

 information, 

 decision 
flows connect participants in both directions. Decision flows are sequences of 

decisions among agents (see Fiala, 2005).  
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Supply chain management can be divided into four phases:  

 design, 

 control, 

 performance evaluation, 

 performance improvement.  

These phases are repeated during the dynamic evolution of the environment 

and the supply chain. The design phase of supply chains plays an important role 

in supply chain management. This paper focuses on modeling this design phase. 

The proposed approach promotes sustainability of supply chains through the 

following instruments: 

 multiple criteria,  

 De Novo optimization, 

 technology development, 

 biform games, 

 the concept of co-opetition. 

Sustainability of supply chains is evaluated by multiple criteria: 

 environmental,  

 social, 

 economic, 

 and others. 

The model contains not only three basic aspects; other criteria can be used 

(technological, legal, etc.). Two models were used for multiple criteria 

evaluation of sustainable supply chains. Multi-objective linear programming 

(MOLP) is a model of optimizing a given system by multiple objectives (Steuer, 

1986). Multi-objective De Novo linear programming (MODNLP) is a problem 

for designing an optimal system by reshaping the feasible set (Zelený, 2010). 

This approach seeks to find a trade-off-free solution and uses only the necessary 

resources for this solution, limited only by budget. The technological innovations 

included in the model bring improvements to the desired criteria and a better 

utilization of available resources.  

The proposed biform game models provide suitable tools for finding an 

equilibrium in the agent-system by combining non-cooperative and cooperative 

approaches. The inclusion of the concept of co-opetition enriches the model with 

other aspects, including considering the influence of other agents such as 

competitors and complementors (Min, Feiqi and Sai, 2008). The search for 

equilibrium in a sustainable supply chain is based on a negotiation approach. 

Information exchange by negotiations reduces inefficiencies and material flows 

and leads to reduced environmental pollution and costs. 

 

http://www.fao.org/wairdocs/ilri/x5465e/x5465e06.htm#phase 1. typification of dairy systems
http://www.fao.org/wairdocs/ilri/x5465e/x5465e06.htm#phase 4: cross site synthesis
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3  Multiple criteria analysis 
 

The first component of the proposed procedure is multiple criteria analysis 

(Greco, Figueira and Ehrgott, 2016). A standard approach can be used to 

optimize the given system and the De Novo approach to design an optimal 

system. Both procedures will be described. The advantages of the De Novo 

approach will be explained. 

 

3.1  Optimizing given systems 

 

In MOLP problems, it is usually impossible to optimize all objectives together in 

a given system. Trade-off means that one cannot increase the level of 

satisfaction for an objective without decreasing it for another objective. Multi- 

-objective linear programming (MOLP) problem can be described as follows: 
 

“Max” z = Cx 

s.t.   Ax ≤ b, x ≥ 0                                             (1) 
 

where C is a ( 𝑘̅, 𝑛̅) matrix of objective coefficients, A is an (𝑚̅, 𝑛̅) matrix of 

structural coefficients, b is an 𝑚̅-vector of known resource restrictions, x is an 

𝑛̅-vector of decision variables. The “Max” operator is used for vector optimization. 

For multi-objective programming problems, the concept of efficient solutions is 

used (e.g. Steuer, 1986). A compromise solution is selected from the set of 

efficient solutions. Many methods are proposed for solving the problem. Most of 

the methods are based on trade-offs between objective values.    
 

Multiple criteria supply chain model 

 

In the next part, a multiple criteria supply chain design problem is formulated. The 

mathematical program determines the ideal locations for each facility and allocates 

the activity at each facility so that the multiple objectives are taken into account and 

the constraints of meeting the customer demand and the facility capacity are 

satisfied. The presented model of a supply chain consists of four layers with 𝑚 

suppliers: 𝑆1, 𝑆2, … , 𝑆𝑚, 𝑛 potential producers: 𝑃1, 𝑃2, … , 𝑃𝑛, 𝑝 potential 

distributors: 𝐷1, 𝐷2, … , 𝐷𝑝 and 𝑟 customers: 𝐶1, 𝐶2, … , 𝐶𝑟.  

The following notation is used:  

𝑎𝑖 = annual supply capacity of supplier 𝑖, 𝑏𝑗 = annual potential capacity of 

producer 𝑗, 

𝑤𝑘 = annual potential capacity of distributor 𝑘, 𝑑𝑙  = annual demand of customer 𝑙, 
𝑓𝑗

𝑃 = fixed cost of potential producer 𝑗, 𝑓𝑘
𝐷  = fixed cost of potential distributor 𝑘, 
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𝑐𝑖𝑗
𝑆  = unit transportation cost from 𝑆𝑖 to 𝑃𝑗, 𝑐𝑗𝑘

𝑃  = unit transportation cost from 𝑃𝑗 

to 𝐷𝑘, 

𝑐𝑘𝑙
𝐷  = unit transportation cost from 𝐷𝑘 to 𝐶𝑙, 𝑒𝑖𝑗

𝑆  = unit pollution from 𝑆𝑖 to 𝑃𝑗, 

𝑒𝑗𝑘
𝑃  = unit pollution from 𝑃𝑗 to 𝐷𝑘, 𝑒𝑘𝑙

𝐷  = unit environmental pollution from 𝐷𝑘 to 𝐶𝑙, 

𝑥𝑖𝑗
𝑆  = number of units transported from 𝑆𝑖 to 𝑃𝑗, 𝑥𝑗𝑘

𝑃  = number of units 

transported from 𝑃𝑗 to 𝐷𝑘, 𝑥𝑘𝑙
𝐷  = number of units transported from 𝐷𝑘 to 𝐶𝑙, 

𝑦𝑗
𝑃 = binary variable for build-up of the fixed capacity of producer 𝑗, 

𝑦𝑘
𝐷 = binary variable for build-up of the fixed capacity of distributor 𝑘. 

With the above notations, the problem can be formulated as follows: 

The model has two objectives: The first one expresses minimizing total costs; 

the second one expresses minimizing total environmental pollution. 

Minimize two objectives:  
 

𝑧1 = ∑ 𝑓𝑗
𝑃𝑦𝑗

𝑃 + ∑ 𝑓𝑘
𝐷𝑦𝑘

𝐷 + ∑ ∑ 𝑐𝑖𝑗
𝑆 𝑥𝑖𝑗

𝑆 + ∑ ∑ 𝑐𝑗𝑘
𝑃 𝑥𝑗𝑘

𝑃 + ∑ ∑ 𝑐𝑘𝑙
𝐷 𝑥𝑘𝑙

𝐷

𝑟

𝑙=1

𝑝

𝑘=1

𝑝

𝑘=1

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

𝑝

𝑘=1

𝑛

𝑗=1

 

𝑧2 = ∑ ∑ 𝑒𝑖𝑗
𝑆 𝑥𝑖𝑗

𝑆 + ∑ ∑ 𝑒𝑗𝑘
𝑃 𝑥𝑗𝑘

𝑃 + ∑ ∑ 𝑒𝑘𝑙
𝐷 𝑥𝑘𝑙

𝐷

𝑟

𝑙=1

𝑝

𝑘=1

𝑝

𝑘=1

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

 

 

subject to the following constraints: 

the amount sent from the supplier to producers cannot exceed the supplier 

capacity:  

∑ 𝑥𝑖𝑗
𝑆 ≤ 𝑎𝑖

𝑛

𝑗=1

,   𝑖 =  1, 2, ..., 𝑚 

the amount produced by the producer  cannot exceed the producer capacity: 

∑ 𝑥𝑗𝑘
𝑃 ≤ 𝑏𝑗𝑦𝑗

𝑃

𝑝

𝑘=1

,  𝑗 =  1, 2, … , 𝑛 

the amount shipped from the distributor should not exceed the distributor 

capacity: 

∑ 𝑥𝑘𝑙
𝐷 ≤ 𝑤𝑘𝑦𝑘

𝐷

𝑟

𝑙=1

,  𝑘 =  1, 2, … , 𝑝 

the amount shipped to the customer must equal the customer demand: 
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∑ 𝑥𝑘𝑙
𝐷 = 𝑑𝑙

𝑝

𝑘=1

,  𝑙 =  1, 2, … , 𝑟 

the amount shipped out of producers cannot exceed the number of units received 

from suppliers: 

∑ 𝑥𝑖𝑗
𝑆 − ∑ 𝑥𝑗𝑘

𝑃 ≥ 0,

𝑝

𝑘=1

𝑚

𝑖=1

  𝑗 =  1, 2, … , 𝑛 

the amount shipped out of distributors cannot exceed the quantity received from 

producers: 

∑ 𝑥𝑗𝑘
𝑃 − ∑ 𝑥𝑘𝑙

𝐷 ≥ 0

𝑟

𝑙=1

𝑛

𝑗=1

,  𝑘 =  1, 2, … , 𝑝 

binary and non-negativity constraints: 

𝑦𝑗
𝑃, 𝑦𝑘

𝐷 ∈ {0,1}, 

𝑥𝑖𝑗
𝑆 , 𝑥𝑗𝑘

𝑃 , 𝑥𝑘𝑙
𝐷 ≥ 0,  𝑖 = 1, 2, … , 𝑚,  𝑗 = 1, 2, … , 𝑛,  𝑘 =  1, 2, … , 𝑝,  l = 1, 2, … , 𝑟 

The formulated model is a multi-objective linear programming problem 

(MOLP). The problem can be solved using MOLP methods.  

 

3.2  Designing optimal systems 

 

By using given prices of resources and the given budget the MOLP problem (1) 

is reformulated into the following MODNLP problem (2):  
 

“Max”     z = Cx 

s.t.  Ax − b ≤ 0, pb ≤ B, x ≥ 0                                     (2) 
 

where b is an 𝑚̅-vector of unknown resource restrictions, p is an 𝑚̅-vector of 

resource prices, and B is the given total available budget.  

From (2) follows that: 

pAx  ≤  pb  ≤ B 
 

Defining an n-vector of unit costs v = pA, we can rewrite the problem (2) as: 
 

“Max”   z = Cx 

s.t.   vx ≤ B,  x  ≥ 0                                             (3) 
 

Solving single objective problems:  
 

Max  z i   = c i x,    i = 1,2,…, 𝑘̅ 
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s.t.   vx ≤ B, x ≥ 0                                             (4)  
 

z* is a 𝑘̅-vector of objective values for the ideal system, concerning budget  B, 

where the elements of the vector are values z
i 
 obtained by solving the set of 

problems (4).  

The problems (4) are continuous “knapsack” problems, with the solutions:  
 

𝑥𝑗
𝑖 = {

0, 𝑗 ≠ 𝑗𝑖

𝐵 𝑣𝑗𝑖
⁄ , 𝑗 = 𝑗𝑖

   , where   𝑗𝑖 ∈ {𝑗 ∈ (1, . . . , 𝑛) |𝑚𝑎𝑥
𝑗

(𝑐𝑗
𝑖/𝑣𝑗)} 

 

The meta-optimum problem can be formulated as follows: 
 

Min    f = vx 

s.t.     Cx ≥ z*, x ≥ 0                                          (5) 
 

Solving the problem (5) provides the solution: x*, B* = vx*, b* = Ax*. 

The value B* identifies the minimum budget to achieve z* through solutions 

x* and b*, with the given budget level B ≤ B*. The optimum-path ratio for 

achieving the best performance for a given budget B is defined as: 
 

𝑟1 =
𝐵

𝐵∗
 

 

The optimum-path ratio provides an effective and fast tool for the efficient 

optimal redesign of large-scale linear systems. The optimal system design for the 

budget B:  

x = r1 x*, b = r1 b*, z = r1 z* 
 

Multi-objective De Novo supply chain model 

 

The De Novo approach can be useful in the design of the multi-criteria supply 

chain. Only a partial relaxation of constraints is adopted. Producer and 

distributor capacities are relaxed. Unit costs for capacity build-up are computed: 

𝑝𝑗
𝑃 =

𝑓𝑗
𝑃

𝑏𝑗
 = cost of the unit capacity of potential producer j,  

𝑝𝑘
𝐷 =

𝑓𝑘
𝐷

𝑤𝑘
 = cost of the unit capacity of potential distributor k. 

Variables for build-up capacities are introduced: 
P

ju  = variable for the flexible capacity of producer j, 

D

ku  = variable for the flexible capacity of producer k. 

The constraints for non-exceeding the producer and distributor fixed 

capacities are replaced by the flexible capacity constraints and the budget 

constraint: 
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∑ 𝑥𝑗𝑘 − 𝑢𝑗
𝑃 ≤ 0

𝑝

𝑘=1

,  𝑗 =  1, 2, … , 𝑛 

∑ 𝑥𝑘𝑙 − 𝑢𝑘
𝐷 ≤ 0

𝑟

𝑙=1

,  𝑘 =  1, 2, … , 𝑝 

∑ 𝑝𝑗
𝑃𝑢𝑗

𝑃 + ∑ 𝑝𝑘
𝐷𝑢𝑘

𝐷 ≤ 𝐵

𝑝

𝑘=1

𝑛

𝑗=1

 

 

The multi-objective optimization can be then seen as a dynamic process. 

Technological innovations bring improvements to the objectives and the better 

utilization of available resources. The technological innovation matrix T = (tij) is 

introduced. The elements in the structural matrix A should be reduced by 

technological progress.  

The problem (2) is reformulated into the innovation MODNLP problem (6): 
 

“Max”     z = Cx 

s.t.  TAx − b ≤ 0, pb ≤ B, x ≥ 0                                    (6) 
 

The De Novo approach provides a better solution with respect to multiple 

objectives and also with lower budget thanks to flexible capacity constraints. 

The capacity of supply chain members has been optimized as regards flows in 

the supply chain and budget. 

 

3.3  An illustrative example 

 

The De Novo approach was tested on a case study. A supply chain is proposed 

with three potential suppliers, three potential manufacturers, three potential 

distributors, and three customers. The chain is evaluated according to two 

criteria: the first one aimed at minimizing total costs and the second one, at 

minimizing overall environmental pollution.  

Inputs for the model are as follows: 

Capacities ai = 100, i = 1, 2, 3; bj = 100, j = 1, 2, 3;  

wk = 100, k = 1, 2, 3; dl = 50, l = 1, 2, 3. 

Fixed costs 𝑓1
𝑃 = 110, 𝑓2

𝑃 = 100, 𝑓3
𝑃 = 120, 𝑓1

𝐷 = 120, 

𝑓2
𝐷 = 110, 𝑓3

𝐷 = 150. 

Unit transportation costs and unit pollution are shown in Table 1 and Table 2. 
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Table 1: Unit transportation costs 
 

𝑐𝑖𝑗
𝑆  1 2 3 𝑐𝑗𝑘

𝑃  1 2 3 𝑐𝑘𝑙
𝐷  1 2 3 

1 5 10 6 1 7 5 9 1 8 3 10 

2 8 9 7 2 6 8 4 2 6 5 4 

3 3 6 8 3 5 7 9 3 7 3 5 
 

Source: Authors. 

 

Table 2: Unit pollution 

 

𝑒𝑖𝑗
𝑆  1 2 3 𝑒𝑗𝑘

𝑃  1 2 3 𝑒𝑘𝑙
𝐷  1 2 3 

1 4 3 8 1 8 7 9 1 8 6 2 

2 8 9 2 2 6 8 4 2 8 9 8 

3 7 6 8 3 4 7 9 3 5 3 5 
 

Source: Authors. 
 

This model was solved by different approaches. The first two approaches 

minimize each criterion separately. The compromise solution is calculated by the 

traditional STEM interactive approach for multi-criteria problems using the  

De Novo approach. The following are non-zero values of the variables that express 

the number of units of the product shipped between each supply chain layer.  

The following values are given for each problem-solving approach: 

Min z1:  𝑥13
𝑆  = 50, 𝑥31

𝑆  = 100, 𝑥12
𝑃  = 100, 𝑥31

𝑃  = 50, 𝑥12
𝐷  = 50, 𝑥21

𝐷  = 50, 𝑥23
𝐷  = 50. 

Min z2:  𝑥12
𝑆  = 100, 𝑥23

𝑆  = 50, 𝑥23
𝑃  = 100, 𝑥31

𝑃  = 50, 𝑥13
𝐷  = 50, 𝑥31

𝐷  = 50, 𝑥32
𝐷  = 50. 

STEM: 𝑥11
𝑆  = 58.13, 𝑥23

𝑆  = 91.87, 𝑥12
𝑃  = 58.13, 𝑥31

𝑃  = 91.87, 𝑥12
𝐷  = 46.87, 𝑥13

𝐷  =  

= 45, 𝑥21
𝐷  = 50, 𝑥22

𝐷  = 3.12, 𝑥23
𝐷  = 50. 

De Novo: 𝑥23
𝑆  = 62.86, 𝑥32

𝑆  = 87.14, 𝑥21
𝑃  = 10, 𝑥23

𝑃  = 77.14, 𝑥31
𝑃  = 62.86, 𝑥12

𝐷  =  

= 50, 𝑥13
𝐷  = 22.86,  𝑥31

𝐷  = 50, 𝑥33
𝐷  = 27.14. 

 

Criteria values z1, z2 and budget B are compared according to these solutions. 

The De Novo solution is better in all values than the STEM solution. The De 

Novo approach provides better solutions with respect to both criteria and also 

with a lower budget due to flexible capacity constraints. The capacities of supply 

chain members have been optimized for flows in the supply chain and budget. 

The comparison of results is shown in Table 3. 

Table 3: Comparison of solution results 
 

 Min z1 Min z2 STEM De Novo 

z1 2460 3490 3070 3000 

z2 3100 1800 2030 2000 

B 460 490 460 365.71 
 

Source: Authors. 
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4  Equilibrium searching by biform games 

 

The second component of the proposed procedure is the search for equilibrium 

(Myerson, 1997). Most supply chains are composed of independent agents with 

individual interests and preferences. Biform games are used for searching for an 

equilibrium in sustainable supply chains. A biform game is a combination of 

non-cooperative and cooperative games for searching for an equilibrium. The 

authors propose to divide biform games into sequential and simultaneous forms.  
 

4.1  Sequential biform games 
 

A sequential biform game (Fiala, 2016a) is a two-stage game: in the first stage, 

players choose their strategies in a non-cooperative way, thus forming the 

second stage of the game, in which the players cooperate. First, suppliers make 

initial proposals and take decisions. This stage is analyzed using a non- 

-cooperative game theory approach. The players search for the Nash equilibrium 

by solving the next problem. 

An n-player non-cooperative game in the normal form is a collection 

{𝑁 = {1,2, … , 𝑛};  𝑋1, 𝑋2, … , 𝑋𝑛;  𝜋1(𝑥1, 𝑥2, … , 𝑥𝑛), … , 𝜋𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) }  (7)  

where N is a set of n players;  𝑋𝑖, i = 1, 2, …, n, is a set of strategies for player i; 

𝜋𝑖(𝑥1, 𝑥2, … , 𝑥𝑛), i = 1, 2, …, n, is a pay-off function for player i, defined on   

a Cartesian product of n sets 𝑋𝑖, i = 1, 2, …, n. 

Decisions of players other than player i are summarized by the vector: 

𝐱−𝑖 = (𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1 … , 𝑥𝑛)                                 (8) 

A vector of decisions (𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0) is the Nash equilibrium of the game if: 

 

𝑥𝑖
0(𝐱−𝑖

0 ) = argmax𝑥𝑖
𝜋𝑖(𝑥𝑖 , 𝐱−𝑖)∀𝑖 = 1,2, … , 𝑛                  (9)  

The Nash equilibrium is a set of decisions from which no player can improve 

the value of his pay-off function by unilaterally deviating from it. 

Next, players negotiate among themselves. In this stage, a cooperative game 

theory is applied to characterize the outcome of negotiation among the players 

over how to distribute the total surplus. Each player’s share of the total surplus is 

the product of its added value and its relative negotiation power. Distribution of 

the total surplus to players can be given by Shapley values (14). 

The cooperative game theory looks at the set of possible outcomes, studies what 

the players can achieve, what coalitions they will form, how the coalitions that do 

form divide the outcome, and whether the outcomes are stable and robust.  
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The maximal combined output is achieved by solving the following problem: 

𝐱𝟎 = argmax𝐱 ∑ 𝜋𝑖(𝑥𝑖)𝑛
𝑖=1                                    (10) 

When modeling cooperative games it is advantageous to switch from the 

normal form to the characteristic function form. The characteristic function of 

the game with the set N of n players is a function 𝑣(𝑆) that is defined for all 

subsets S ⊆ N (i.e. for all coalitions) and which assigns to each subset S a value 

𝑣(𝑆) with the following characteristics: 

𝑣(∅) = 0, 𝑣(𝑆1 ∪ 𝑆2) ≥ 𝑣(𝑆1) + 𝑣(𝑆2)                       (11) 

where S1, S2 are disjoint subsets of N. The pair (N, v ) is called a cooperative 

game of n players in the characteristic function form. 

Allocation mechanisms are based on different approaches, such as Shapley 

values, contracts, auctions, negotiations, etc. A particular allocation policy, 

introduced by Shapley (1953), has been shown to possess the best properties in 

terms of balance and fairness (Mahjoub and Hennet, 2014). The so called 

Shapley vector is defined as: 

h = (h1, h2, …, hn)                                          (12) 

where the individual components (Shapley values) indicate the mean marginal 

contribution of i-th player to all coalitions, of which she/he may be a member. 

Player contribution to the coalition S is calculated by the formula: 

𝑣(𝑆) − 𝑣(𝑆 − {𝑖})                                          (13) 

The Shapley value for the i-th player is calculated as a weighted sum of 

marginal contributions according to the formula: 

ℎ𝑖 = ∑ {
(|𝑆|−1) ! (𝑛−|𝑆|) !

𝑛!
. [𝑣(𝑆) − 𝑣(𝑆 − {𝑖})]}𝑆                 (14) 

where the number of coalition members is denoted by |S| and the summation 

runs over all coalitions i  S.  

 

4.2  Simultaneous biform games 
 

The simultaneous biform game is a one-stage model where combinations  

of concepts for cooperative and non-cooperative games are applied. The 

combinations will be changed according to situations in problems.  At this stage, 

multi-round negotiations take place. The first problem is a classification of 

situations. The situations are affected by: 

 which players can cooperate,  

 to what scope they can cooperate. 
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If all players can cooperate fully, a standard cooperative model (10) can be 

used with subsequent distribution of the result according to the Shapley values 

(14). If no one can cooperate even in a partial context, a standard non- 

-cooperative model (9) is used.  

The general simultaneous biform games are based on a negotiation process 

with multiple criteria (see Fiala, 1999). The negotiation concept is based on the 

assumption that each negotiating subject decides under pressure of objective 

context. The scope of cooperation is dynamic and changes over time. The effects 

of pressures are reflected in restrictive conditions.  

 

Negotiation model 

 

Suppose we have n negotiation participants. Denote by X the decision space for 

the negotiating process. The elements of this space are decisions x  X, which 

are vectors whose components represent the parameters of the decision.  

A consensus decision x* should be chosen from the decision space X. The 

traditional game concepts assume a fixed structure and fixed sets of strategies. 

The sets of strategies are assumed to be dynamic 𝑋𝑖(𝑡), for players i = 1, 2, …, 

n,  depending on discrete time periods t = 0, 1, 2, …, T. A dynamic evaluations 

of strategies will be also considered. 

Each participant evaluates decisions using multiple criteria and compares the 

decisions with the target values. Multiple criteria analysis from the first 

component of the proposed procedure is applied. The analysis is based on the De 

Novo approach. The criteria are in the form of criteria functions, and all 

participants want to optimize their values. Each participant in negotiations may 

have a different number of criteria. Denote by f
1(x), f

2(x), …, f
n(x) the vector 

criteria functions that transform decision x  into the vectors of target values y1, 

y
2, …, y

n of the target spaces of participants Y1, Y2, …, Yn. However, the 

participant tries to not reveal his interests and his strategy to all players. One’s 

own negotiations and exchanges of information between the participants occur 

in the decision space. 

The negotiation process can be represented by dynamic models. Individual 

time moments correspond to rounds of negotiation, in which the current joint 

problem representation shows the degree of consensus or conflict between the 

parties in the negotiations. The development of problem representations can be 

described as a search for consensus through the exchange of information 

between the participants. The negotiation process takes place at discrete time 

points t = 0, 1, 2, …, T. At time T the process is completed by finding  

a trajectory to time horizon T. The negotiation process can be modeled as  
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a gradual change over time of the negotiation space, which is a subset of the 

decision space containing acceptable decisions of participants in the negotiation 

time until a single-element negotiation space is reached. 

For each participant, a set of acceptable decisions is formulated, which is  

a set of decisions that are permissible and acceptable in terms of the required 

aspiration levels of criteria functions. The aspiration levels bi(t), i = 1, 2, …, n,  

t = 0, 1, 2, …, T, of criteria functions represent opportunities for added values. 

At the beginning of the negotiations it has the form: 

Xi(0) = {x; x  X, fi(x)  bi(0)}, i = 1, 2, …, n             (15)  

Then the negotiation space is defined at the beginning of the negotiations as 

an intersection of sets of acceptable decisions of all participants in the 

negotiations: 

X0(0) = 
1

r

i

 Xi(0)                                          (16) 

If the negotiation space X0(0) is a single-element set, the negotiation problem 

is trivial. This element is the consensus. The negotiation problem becomes 

interesting when the negotiation space is empty or contains more than one 

element. In the former case, the participants have to reduce some or all of the 

aspiration levels of criteria functions, but the participants are involved more in 

the reduction of certain criteria and less in the reduction of others. In the latter 

case, each element of the negotiation space is acceptable to all participants, but 

different elements are evaluated differently, because they meet the criteria of the 

participants on different levels. Further negotiations are conducted at time points 

t = 1, 2, …, T, and should lead to a consensus decision, to achieve the single- 

-element negotiation space X0(t). 

 

5  Conclusion 

 

This paper proposes and discusses a procedure for designing sustainable supply 

chains. This procedure takes into account multiple agents in the system and 

multiple evaluation criteria to solve the design problem. The procedure is 

flexible enough: it is, in general, open to other types of criteria and other types of 

agents. The De Novo approach is applied to the multiple-criteria supply chain 

design problem and provides a better solution than traditional approaches 

applied on fixed constraints. The approach is not oriented towards the 

optimization of some criteria, but seeks a trade-off-free solution by 
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reformulating resource constraints only limited by the budget. The resources are 

saved by drawing only in the amount necessary to reach a balanced solution.  

The multi-criteria approach is applied to the search for equilibrium for 

interested agents using biform game procedures. Biform games combine 

cooperative and non-cooperative approaches of game theory. The authors 

propose to divide biform games into sequential and simultaneous forms and to 

use a negotiation model for simultaneous games. The concept of co-opetition 

brings other aspects into design of sustainable supply chains, including other 

agents, such as competitors and complementors.  

The procedure is open to be complemented by other concepts and 

approaches: for example, allocation mechanisms can be based on different 

approaches, such as Shapley values, contracts (Fiala, 2016a), auctions (Fiala, 

2016b), and negotiations (Fiala, 1999). A combination of these concepts and 

approaches can be a powerful instrument for designing supply chains. The 

complex structure of the model can be captured using graph theory in a system 

consisting of an environment in which agents (nodes) create interactions (edges) 

and flows directed to meet the global demand. Some future research trends of 

sustainable supply chain management have been suggested. The proposed 

procedure tries to capture, at least partially, some of these trends.  
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