B_Ma_1 Mathematics 1

University of Finance and Administration
Winter 2024
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Timetable of Seminar Groups
B_Ma_1/cAPH: Wed 14:00–14:44 E004, Wed 14:45–15:30 E004, except Wed 20. 11. ; and Thu 28. 11. 15:45–17:15 S11, E. Ulrychová
B_Ma_1/cFPH: Wed 10:30–11:14 E230, Wed 11:15–12:00 E230, except Wed 20. 11. ; and Thu 28. 11. 15:45–17:15 S11, E. Ulrychová
B_Ma_1/pAFPH: Wed 8:45–9:29 E230, Wed 9:30–10:15 E230, except Wed 20. 11. ; and Thu 28. 11. 14:00–15:30 S11, E. Ulrychová
Prerequisites
There are no prerequisites for this course.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the basic terms of linear algebra and their mutual relationships, with the basic properties of real sequences and real functions of one real variable, especially with the limit of a sequence, the limit of a function and with the basics of the differential calculus.
Learning outcomes
At the end of the course students should be able to:
- find the solution of a system of linear equations using matrices
- calculate the limit of a a sequence and the limit of a function
- calculate the derivative of a function
- calculate the limit of a function using l’Hôpital’s Rule
Syllabus
  • 1. Foundations of mathematical logic. Sets
  • 2. Vectors and vector spaces
  • 3. Matrix. Rank of matrix
  • 4. System of linear equations
  • 5. Matrix operations. Inverse matrix
  • 6. Determinants
  • 7. Sequence and its limit
  • 8. Function and its properties
  • 9. Basic functions. Continuity and limit of function
  • 10. Derivative and its properties
  • 11. Derivative of composite function
  • 12. Applications of derivatives -- l’Hôpital’s rule, equation of tangent line
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
  • KLŮFA, Jindřich. Základy matematiky pro Vysokou školu ekonomickou. Praha: Ekopress, 2021. ISBN 978-80-87865-72-9.
Teaching methods
The course is realised in the form of lecturers and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
The course is also listed under the following terms Winter 2019, Winter 2020, Winter 2021, Winter 2022, Winter 2023.
  • Enrolment Statistics (recent)
  • Permalink: https://is.vsfs.cz/course/vsfs/winter2024/B_Ma_1