B_Ma_2 Mathematics 2

University of Finance and Administration
Summer 2025
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Prerequisites
B_Ma_1 Mathematics 1
The condition for the completion of this course is completion of the course B_MaB_1.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.
Learning outcomes
At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables
Syllabus
  • 1. Monotony and local extrema
  • 2. Convexity and concavity, inflection points
  • 3. Behaviour of a function. Taylor polynomial
  • 4. Indefinite integral
  • 5. Integration by parts
  • 6. Integration by substitution
  • 7. Definite integral
  • 8. Improper integral
  • 9. Infinite series
  • 10. Power series
  • 11. Function of several variables, partial derivatives.
  • 12. Local extrema of functions of two variables
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
  • KLŮFA, Jindřich. Základy matematiky pro Vysokou školu ekonomickou. Praha: Ekopress, 2021. ISBN 978-80-87865-72-9.
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
The course is also listed under the following terms Summer 2020, Summer 2021, Summer 2022, Summer 2023, Summer 2024.

B_Ma_2 Mathematics 2

University of Finance and Administration
Summer 2024
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Timetable of Seminar Groups
B_Ma_2/cAPH: each odd Tuesday 8:45–9:29 E306, each odd Tuesday 9:30–10:15 E306, each odd Tuesday 10:30–11:14 E306, each odd Tuesday 11:15–12:00 E306, E. Ulrychová
B_Ma_2/cFPH: Tue 12:15–12:59 E309, Tue 13:00–13:45 E309, except Tue 27. 2. ; and Thu 22. 2. 12:15–13:45 E225, E. Ulrychová
B_Ma_2/pAFPH: each even Tuesday 8:45–9:29 E004, each even Tuesday 9:30–10:15 E004, each even Tuesday 10:30–11:14 E004, each even Tuesday 11:15–12:00 E004, E. Ulrychová
B_Ma_2/vAPH: Fri 23. 2. 14:00–15:30 E230, 15:45–17:15 E230, Fri 8. 3. 17:30–19:00 E230, 19:15–20:45 E230, Sat 13. 4. 14:00–15:30 E230, 15:45–17:15 E230, Fri 26. 4. 14:00–15:30 E230, 15:45–17:15 E230, E. Ulrychová
Prerequisites
B_Ma_1 Mathematics 1
The condition for the completion of this course is completion of the course B_MaB_1.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.
Learning outcomes
At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables
Syllabus
  • 1. Monotony and local extrema
  • 2. Convexity and concavity, inflection points
  • 3. Behaviour of a function. Taylor polynomial
  • 4. Indefinite integral
  • 5. Integration by parts
  • 6. Integration by substitution
  • 7. Definite integral
  • 8. Improper integral
  • 9. Infinite series
  • 10. Power series
  • 11. Function of several variables, partial derivatives.
  • 12. Local extrema of functions of two variables
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
  • KLŮFA, Jindřich. Základy matematiky pro Vysokou školu ekonomickou. Praha: Ekopress, 2021. ISBN 978-80-87865-72-9.
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
The course is also listed under the following terms Summer 2020, Summer 2021, Summer 2022, Summer 2023, Summer 2025.

B_Ma_2 Mathematics 2

University of Finance and Administration
Summer 2023
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
doc. Radim Valenčík, CSc. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Timetable of Seminar Groups
B_Ma_2/cAPH: each odd Monday 10:30–11:14 E224, each odd Monday 11:15–12:00 E224, each odd Wednesday 12:15–12:59 E227, each odd Wednesday 13:00–13:45 E227, except Mon 27. 3. ; and Mon 27. 3. 10:30–12:00 E230, E. Ulrychová
B_Ma_2/cEKFPH: each odd Monday 12:15–12:59 E224, each odd Monday 13:00–13:45 E224, each odd Monday 14:00–14:44 E224, each odd Monday 14:45–15:30 E224, except Mon 27. 3. ; and Mon 27. 3. 12:15–13:45 E225, 14:00–15:30 E227, E. Ulrychová
B_Ma_2/cEKKV: each odd Thursday 9:30–10:14 KV204, each odd Thursday 10:15–11:00 KV204, each odd Thursday 11:15–11:59 KV204, each odd Thursday 12:00–12:45 KV204, except Thu 13. 4., except Thu 27. 4. ; and Thu 13. 4. 10:00–11:30 KV204, 11:45–13:15 KV204, Thu 27. 4. 10:00–11:30 KV204, 11:45–13:15 KV204, E. Ulrychová
B_Ma_2/poEKKV: each even Monday 8:45–9:29 KV205, each even Monday 9:30–10:15 KV205, each even Monday 10:30–11:14 KV205, each even Monday 11:15–12:00 KV205, E. Ulrychová
B_Ma_2/pxAEKFPH: each even Monday 8:45–9:29 E230, each even Monday 9:30–10:15 E230, each even Monday 10:30–11:14 E230, each even Monday 11:15–12:00 E230, E. Ulrychová
B_Ma_2/vAPH: Fri 10. 2. 17:30–19:00 E230, 19:15–20:45 E230, Fri 24. 2. 17:30–19:00 E230, 19:15–20:45 E230, Fri 24. 3. 17:30–19:00 E230, 19:15–20:45 E230, Fri 14. 4. 17:30–19:00 E230, 19:15–20:45 E230, E. Ulrychová
B_Ma_2/vEKFPH: Sat 11. 2. 11:30–13:00 E230, Sat 11. 3. 11:30–13:00 E230, 14:00–15:30 E230, 15:45–17:15 E230, Fri 24. 3. 14:00–15:30 E230, 15:45–17:15 E230, Sat 29. 4. 14:00–15:30 E230, 15:45–17:15 E230, R. Valenčík
Prerequisites
B_Ma_1 Mathematics 1
The condition for the completion of this course is completion of the course B_MaB_1.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.
Learning outcomes
At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables
Syllabus
  • 1. Monotony and local extrema
  • 2. Convexity and concavity, inflection points
  • 3. Behaviour of a function. Taylor polynomial
  • 4. Indefinite integral
  • 5. Integration by parts
  • 6. Integration by substitution
  • 7. Definite integral
  • 8. Improper integral
  • 9. Infinite series
  • 10. Power series
  • 11. Function of several variables, partial derivatives.
  • 12. Local extrema of functions of two variables
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
  • KLŮFA, Jindřich. Základy matematiky pro Vysokou školu ekonomickou. Praha: Ekopress, 2021. ISBN 978-80-87865-72-9.
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
The course is also listed under the following terms Summer 2020, Summer 2021, Summer 2022, Summer 2024, Summer 2025.

B_Ma_2 Mathematics 2

University of Finance and Administration
Summer 2022
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
PaedDr. Renata Majovská, PhD. (seminar tutor)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Timetable of Seminar Groups
B_Ma_2/cAPH: Wed 10:30–11:14 E228, Wed 11:15–12:00 E228, E. Ulrychová
B_Ma_2/cEKKV: each even Thursday 13:30–14:14 KV204, each even Thursday 14:15–15:00 KV204, each even Thursday 15:15–15:59 KV204, each even Thursday 16:00–16:45 KV204, E. Ulrychová
B_Ma_2/cEKPH: Wed 17:30–18:14 E224, Wed 18:15–19:00 E224, except Wed 27. 4. ; and Tue 3. 5. 9:30–11:00 E306, R. Majovská
B_Ma_2/cFPH: Wed 15:45–16:29 E228, Wed 16:30–17:15 E228, except Wed 27. 4. ; and Tue 3. 5. 9:30–11:00 E306, R. Majovská
B_Ma_2/pAPH: Wed 8:45–9:29 E228, Wed 9:30–10:15 E228, E. Ulrychová
B_Ma_2/pEKFPH: Mon 8:45–9:29 E004, Mon 9:30–10:15 E004, except Mon 14. 3. ; and Mon 4. 4. 8:00–8:44 E004, Mon 11. 4. 8:00–8:44 E004, E. Ulrychová
B_Ma_2/pEKKV: each even Thursday 10:00–10:44 KV204, each even Thursday 10:45–11:30 KV204, each even Thursday 11:45–12:29 KV204, each even Thursday 12:30–13:15 KV204, E. Ulrychová
B_Ma_2/vAPH: Fri 11. 2. 17:30–19:00 S35, 19:15–20:45 S35, Fri 25. 2. 17:30–19:00 S35, 19:15–20:45 S35, Sat 9. 4. 14:00–15:30 E305, 15:45–17:15 E305, Sat 30. 4. 15:45–17:15 E305, 17:30–19:00 E305, E. Ulrychová
B_Ma_2/vEKFPH: Fri 11. 2. 14:00–15:30 E225, 15:45–17:15 E225, Fri 25. 2. 14:00–15:30 E225, 15:45–17:15 E225, Fri 25. 3. 14:00–15:30 E225, 15:45–17:15 E225, Fri 8. 4. 14:00–15:30 E225, 15:45–17:15 E225, R. Majovská
Prerequisites
B_Ma_1 Mathematics 1
The condition for the completion of this course is completion of the course B_MaB_1.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.
Learning outcomes
At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables
Syllabus
  • 1. Monotony and local extrema
  • 2. Convexity and concavity, inflection points
  • 3. Behaviour of a function. Taylor polynomial
  • 4. Indefinite integral
  • 5. Integration by parts
  • 6. Integration by substitution
  • 7. Definite integral
  • 8. Improper integral
  • 9. Infinite series
  • 10. Power series
  • 11. Function of several variables, partial derivatives.
  • 12. Local extrema of functions of two variables
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
  • KLŮFA, Jindřich. Základy matematiky pro Vysokou školu ekonomickou. Praha: Ekopress, 2021. ISBN 978-80-87865-72-9.
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
The course is also listed under the following terms Summer 2020, Summer 2021, Summer 2023, Summer 2024, Summer 2025.

B_Ma_2 Mathematics 2

University of Finance and Administration
Summer 2021
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
PaedDr. Renata Majovská, PhD. (seminar tutor)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Timetable of Seminar Groups
B_Ma_2/cAPH: Mon 14:00–14:44 E223, Mon 14:45–15:30 E223, E. Ulrychová
B_Ma_2/cEKKV: each even Thursday 10:30–11:14 KV202, each even Thursday 11:15–12:00 KV202, each even Thursday 12:15–12:59 KV202, each even Thursday 13:00–13:45 KV202, E. Ulrychová
B_Ma_2/cEKPH: Mon 15:45–16:29 E223, Mon 16:30–17:15 E223, E. Ulrychová
B_Ma_2/cFPH: Wed 15:45–16:29 E228, Wed 16:30–17:15 E228, R. Majovská
B_Ma_2/pAEKFPH: Mon 12:15–12:59 E230, Mon 13:00–13:45 E230, E. Ulrychová
B_Ma_2/poEKKV: Mon 12:15–12:59 KV202, Mon 13:00–13:45 KV202, E. Ulrychová
B_Ma_2/vAPH: Sat 13. 2. 14:00–15:30 E222, 15:45–17:15 E222, Sat 27. 2. 9:45–11:15 E222, 11:30–13:00 E222, Sat 13. 3. 14:00–15:30 E222, 15:45–17:15 E222, Sat 17. 4. 14:00–15:30 E222, 15:45–17:15 E222, E. Ulrychová
B_Ma_2/vEKFPH: Fri 12. 2. 14:00–15:30 E227, 15:45–17:15 E227, Fri 12. 3. 14:00–15:30 E227, 15:45–17:15 E227, Fri 16. 4. 14:00–15:30 E227, 15:45–17:15 E227, Fri 23. 4. 14:00–15:30 E227, 15:45–17:15 E227, R. Majovská
Prerequisites
B_Ma_1 Mathematics 1
The condition for the completion of this course is completion of the course B_MaB_1.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.
Learning outcomes
At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables
Syllabus
  • 1. Monotony and local extrema
  • 2. Convexity and concavity, inflection points
  • 3. Behaviour of a function. Taylor polynomial
  • 4. Indefinite integral
  • 5. Integration by parts
  • 6. Integration by substitution
  • 7. Definite integral
  • 8. Improper integral
  • 9. Infinite series
  • 10. Power series
  • 11. Function of several variables, partial derivatives.
  • 12. Local extrema of functions of two variables
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
The course is also listed under the following terms Summer 2020, Summer 2022, Summer 2023, Summer 2024, Summer 2025.

B_Ma_2 Mathematics 2

University of Finance and Administration
Summer 2020
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková
Timetable of Seminar Groups
B_Ma_2/cAPH: Mon 12:15–12:59 E129, Mon 13:00–13:45 E129, E. Ulrychová
B_Ma_2/cEKPH: Tue 12:15–12:59 E222, Tue 13:00–13:45 E222, E. Ulrychová
B_Ma_2/cFPH: Tue 10:30–11:14 E129, Tue 11:15–12:00 E129, E. Ulrychová
B_Ma_2/pAEKFPH: Mon 10:30–11:14 E007KC, Mon 11:15–12:00 E007KC, E. Ulrychová
B_Ma_2/vAEKFPH: Fri 14. 2. 14:00–15:30 E227, 15:45–17:15 E227, Fri 28. 2. 14:00–15:30 E227, 15:45–17:15 E227, Fri 13. 3. 17:30–19:00 E227, 19:15–20:45 E227, Fri 17. 4. 14:00–15:30 E227, 15:45–17:15 E227, E. Ulrychová
Prerequisites
B_Ma_1 Mathematics 1
The condition for the completion of this course is completion of the course B_MaB_1.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.
Learning outcomes
At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables
Syllabus
  • 1. Monotony and local extrema
  • 2. Convexity and concavity, inflection points
  • 3. Behaviour of a function. Taylor polynomial
  • 4. Indefinite integral
  • 5. Integration by parts
  • 6. Integration by substitution
  • 7. Definite integral
  • 8. Improper integral
  • 9. Infinite series
  • 10. Power series
  • 11. Function of several variables, partial derivatives.
  • 12. Local extrema of functions of two variables
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
The course is also listed under the following terms Summer 2021, Summer 2022, Summer 2023, Summer 2024, Summer 2025.
  • Enrolment Statistics (recent)