B_ZZD Knowledge Discovery in Database
University of Finance and AdministrationSummer 2021
- Extent and Intensity
- 2/0/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 10:30–11:14 S22, Mon 11:15–12:00 S22, P. Berka
B_ZZD/vAPH: Sat 20. 2. 9:45–11:15 S24, 11:30–13:00 S24, Fri 5. 3. 14:00–15:30 S24, P. Berka - Prerequisites
- B_ES Expert Systems
The requirement for the completion of this course is completion of the course B_ES. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases. The lectures focus on different machine learning algorithms. The students will also work wit one of the widely used data mining systems.
- Learning outcomes
- At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- required literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- recommended literature
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning Tools and Techniques with Java. Fourth edition. Morgan Kaufmann, San Francisco 2016
- not specified
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 6 hodin KS/semestr.
B_ZZD Knowledge Discovery in Database
University of Finance and AdministrationSummer 2020
- Extent and Intensity
- 2/0/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 12:15–12:59 E024, Mon 13:00–13:45 E024, except Mon 17. 2. ; and Mon 24. 2. 10:30–12:00 E125, P. Berka
B_ZZD/vAPH: Sat 8. 2. 9:45–11:15 S14, 11:30–13:00 S14, Fri 20. 3. 15:45–17:15 S14, P. Berka - Prerequisites
- B_ES Expert Systems
The requirement for the completion of this course is completion of the course B_ES. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases. The lectures focus on different machine learning algorithms. The students will also work wit one of the widely used data mining systems.
- Learning outcomes
- At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- required literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- recommended literature
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning Tools and Techniques with Java. Fourth edition. Morgan Kaufmann, San Francisco 2016
- not specified
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 6 hodin KS/semestr.
B_ZZD Knowledge Discovery in Database
University of Finance and AdministrationSummer 2019
- Extent and Intensity
- 2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZZD/pAPH: Thu 8:45–9:29 E126, Thu 9:30–10:15 E126, P. Berka
B_ZZD/vAPH: Fri 8. 3. 17:30–19:00 E227, Sat 6. 4. 9:45–11:15 E227, 11:30–13:00 E227, P. Berka - Prerequisites
- B_ES Expert Systems
The requirement for the completion of this course is completion of the course B_ES. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases. The lectures focus on different machine learning algorithms. The students will also work wit one of the widely used data mining systems.
- Learning outcomes
- At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- required literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- recommended literature
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning Tools and Techniques with Java. Fourth edition. Morgan Kaufmann, San Francisco 2016
- not specified
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 6 hodin KS/semestr.
B_ZZD Knowledge Discovery in Database
University of Finance and AdministrationSummer 2018
- Extent and Intensity
- 2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 8:45–9:29 E307, Mon 9:30–10:15 E307, P. Berka
- Prerequisites
- B_ES Expert Systems
The requirement for the completion of this course is completion of the course B_ES. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases.
At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data, - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- required literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- recommended literature
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning Tools and Techniques with Java. Fourth edition. Morgan Kaufmann, San Francisco 2016
- not specified
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 6 hodin KS/semestr.
B_ZZD Knowledge Discovery in Database
University of Finance and AdministrationSummer 2017
- Extent and Intensity
- 2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ing. Barbora Ptáčková - Timetable of Seminar Groups
- B_ZZD/pAPH: Wed 12:15–12:59 E304, Wed 13:00–13:45 E304, P. Berka
B_ZZD/vAPH: Sat 11. 2. 9:45–11:15 E225, 11:30–13:00 E225, Fri 10. 3. 15:45–17:15 E304, P. Berka - Prerequisites
- B_ES Expert Systems
The requirement for the completion of this course is completion of the course B_ES. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases.
At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data, - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- required literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- recommended literature
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning Tools and Techniques with Java. Fourth edition. Morgan Kaufmann, San Francisco 2016
- not specified
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 6 hodin KS/semestr.
B_ZZD Knowledge Discovery in Database
University of Finance and AdministrationSummer 2016
- Extent and Intensity
- 2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ing. Barbora Ptáčková - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 8:45–9:29 E305, Mon 9:30–10:15 E305, except Mon 8. 2., except Mon 7. 3. ; and Thu 17. 3. 8:45–10:15 E306, 10:30–12:00 E306, P. Berka
B_ZZD/vAPH: Fri 26. 2. 15:30–17:00 E128, Fri 8. 4. 15:30–17:00 E228, 17:15–18:45 E228, P. Berka - Prerequisites
- B_ES Expert Systems
There are no prerequisites for this course. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases.
At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data, - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning tools and Techniques with Java. Second edition. Morgan Kaufmann, San Francisco 2005
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 6 hodin KS/semestr.
B_ZZD Knowledge Discovery in Database
University of Finance and AdministrationSummer 2015
- Extent and Intensity
- 2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Tamara Urbánková - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 8:45–9:29 E128, Mon 9:30–10:15 E128, P. Berka
- Prerequisites
- B_ES Expert Systems
There are no prerequisites for this course. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases.
At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data, - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning tools and Techniques with Java. Second edition. Morgan Kaufmann, San Francisco 2005
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 6 hodin KS/semestr. - Teacher's information
- http://sorry.vse.cz/~berka/B_ZZD
B_ZZD Information Retrieval from Database
University of Finance and AdministrationSummer 2014
- Extent and Intensity
- 2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Dagmar Medová, DiS. - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 8:45–9:29 DELL ROOM E302PC, Mon 9:30–10:15 DELL ROOM E302PC, P. Berka
B_ZZD/vAPH: Fri 28. 3. 17:15–18:45 E128, Fri 11. 4. 15:30–17:00 E128, 17:15–18:45 E128, P. Berka - Prerequisites
- There are no prerequisites for this course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases.
At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data, - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning tools and Techniques with Java. Second edition. Morgan Kaufmann, San Francisco 2005
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
General note: Aa2.
Information on the extent and intensity of the course: 6 hodin KS/semestr. - Teacher's information
- http://sorry.vse.cz/~berka/B_ZZD
B_ZZD Information Retrieval from Database
University of Finance and AdministrationSummer 2013
- Extent and Intensity
- 2/0. 3 credit(s). Recommended Type of Completion: z (credit). Other types of completion: zk (examination).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Dagmar Medová, DiS. - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 10:30–11:14 DELL ROOM E302PC, Mon 11:15–12:00 DELL ROOM E302PC, P. Berka
B_ZZD/vAPH: Fri 22. 2. 17:15–18:45 E228, Fri 22. 3. 15:30–17:00 E125, 17:15–18:45 E125, P. Berka - Prerequisites
- There are no prerequisites for this course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the methods used for knowledge discovery in databases.
At the end of the course students should be able to:
- understand the role of KDD for data analysis,
- understand the basic principles of various data mining algorithms,
- understand the basic methods of evaluation of created models,
- understand basic preprocessing operations,
- formulate KDD tasks for real-world data, - Syllabus
- 1. The process of KDD: tasks, steps, methodologies
- 2. The background for KDD: databases, statistics,
- 3. Machine learning: basic tasks
- 4. decision trees,
- 5. association rules,
- 6. decision rules,
- 7. neural nets, gentic algorithms,
- 8. bayesian methods, instance based learning
- 9. Evaluation what has been learned
- 10. Data preprocessing methods
- 11. Data mining using Weka
- 12. Test
- Literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Witten I., Frank E.: Data Mining, Practical Machine Learning tools and Techniques with Java. Second edition. Morgan Kaufmann, San Francisco 2005
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Teaching methods
- - lectures and seminars in full-time study,
- tutorials in part-time study,
- case study of data analysis using data mining methods - Assessment methods
- - written final test consisting of unstructured questions (min 60% points)
- case study of data analysis using data mining methods - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
General note: Aa2.
Information on the extent and intensity of the course: 6 hodin KS/semestr. - Teacher's information
- http://sorry.vse.cz/~berka/B_ZZD
B_ZZD Information Retrieval from Database
University of Finance and Administrationsummer 2012
- Extent and Intensity
- 2/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 8:45–9:29 DELL ROOM E302PC, Mon 9:30–10:15 DELL ROOM E302PC, P. Berka
B_ZZD/vAPH: Sat 3. 3. 9:45–11:15 E303PC, 11:30–13:00 E303PC, Sat 31. 3. 14:00–15:30 E303PC, 15:45–17:15 E303PC, P. Berka - Prerequisites (in Czech)
- Expertní systémy
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives (in Czech)
- Cílem předmětu je seznámit studenty s metodami automatizovaného získávání znalostí z databází. V předmětu bude podán přehled problematiky (která je klíčovým faktorem rozvoje informačních technologií), používaných metod a systémů vyvíjených ve světě a u nás. V praktické části budou studenti pracovat s některými vybranými systémy.
- Syllabus (in Czech)
- Tato osnova je určena pro prezenční studium, průběh výuky pro kombinované studium je uveden ve studijních materiálech formou metodického listu (ML).
- Obsah přednášek:
- 1. Proces dobývání znalostí z databází: typy úloh, dílčí kroky, metodiky.
- 2. Východiska dobývání znalostí: databázové techniky, statistické metody analýzy dat
- 3. Strojové učení
- 4. Metody dobývání znalostí:
- 4.1 Symbolické metody strojového učení: rozhodovací stromy, rozhodovací pravidla, asociační pravidla, případové usuzování.
- 4.2 Subsymbolické metody strojového učení: neuronové sítě, bayesovská klasifikace, genetické algoritmy.
- 5. Interpretace nalezených znalostí: testování a kombinování modelů,vizualizace.
- 6. Předzpracování dat: selekce, transformace, diskretizace.
- Literature
- Povinná literatura
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Doporučená literatura
- Witten I., Frank E.: Data Mining, Practical Machine Learning tools and Techniques with Java. Second edition. Morgan Kaufmann, San Francisco 2005
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Další zdroje
- sorry.vse.cz/~berka/B_ZZD
- www.kdnuggets.com
- Assessment methods (in Czech)
- Typ výuky: Výuka probíhá formou přednášek Rozsah povinné účasti ve výuce: Minimální povinná účast na cvičení v prezenčním studiu je 75%, na řízených skupinových konzultacích v kombinovaném studiu 50%. Studentům, kteří nesplní povinný rozsah účasti, mohou být v průběhu semestru zadány dodatečné studijní povinnosti (v míře, která umožní prokázat studijní výsledky a získané kompetence nezbytné pro úspěšné zakončení předmětu). Způsob zakončení předmětu: Předmět je ukončen zkouškou. Pro úspěšné absolvování je třeba napsat test z teorie a (v prezenčním studiu) odevzdat výsledky analýzy zadaných dat systémem Weka
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 8 hodin KS/semestr.
B_ZZD Information Retrieval from Database
University of Finance and AdministrationWinter 2011
- Extent and Intensity
- 2/0. 4 credit(s). Type of Completion: zk (examination).
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Course Enrolment Limitations
- The course is offered to students of any study field.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Information on completion of the course: ISP
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 8 hodin/semestr.
B_ZZD Information Retrieval from Database
University of Finance and AdministrationSummer 2011
- Extent and Intensity
- 2/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 10:30–11:14 DELL ROOM E302PC, Mon 11:15–12:00 DELL ROOM E302PC, P. Berka
B_ZZD/vAPH: Fri 11. 2. 13:45–15:15 E306, 15:30–17:00 E306, Fri 11. 3. 15:30–17:00 E306, 17:15–18:45 E306, P. Berka - Prerequisites (in Czech)
- Expertní systémy
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives (in Czech)
- Cílem předmětu je seznámit studenty s metodami automatizovaného získávání znalostí z databází. V předmětu bude podán přehled problematiky (která je klíčovým faktorem rozvoje informačních technologií), používaných metod a systémů vyvíjených ve světě a u nás. V praktické části budou studenti pracovat s některými vybranými systémy.
- Syllabus (in Czech)
- Tato osnova je určena pro prezenční studium, průběh výuky pro kombinované studium je uveden ve studijních materiálech formou metodického listu (ML).
- Obsah přednášek:
- 1. Proces dobývání znalostí z databází: typy úloh, dílčí kroky, metodiky.
- 2. Východiska dobývání znalostí: databázové techniky, statistické metody analýzy dat
- 3. Strojové učení
- 4. Metody dobývání znalostí:
- 4.1 Symbolické metody strojového učení: rozhodovací stromy, rozhodovací pravidla, asociační pravidla, případové usuzování.
- 4.2 Subsymbolické metody strojového učení: neuronové sítě, bayesovská klasifikace, genetické algoritmy.
- 5. Interpretace nalezených znalostí: testování a kombinování modelů,vizualizace.
- 6. Předzpracování dat: selekce, transformace, diskretizace.
- Literature
- Povinná literatura
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Doporučená literatura
- Witten I., Frank E.: Data Mining, Practical Machine Learning tools and Techniques with Java. Second edition. Morgan Kaufmann, San Francisco 2005
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Další zdroje
- sorry.vse.cz/~berka/B_ZZD
- www.kdnuggets.com
- Assessment methods (in Czech)
- Typ výuky: Výuka probíhá formou přednášek Rozsah povinné účasti ve výuce: Minimální povinná účast na cvičení v prezenčním studiu je 80%, na řízených skupinových konzultacích v kombinovaném studiu 50%. Studentům, kteří nesplní povinný rozsah účasti, mohou být v průběhu semestru zadány dodatečné studijní povinnosti (v míře, která umožní prokázat studijní výsledky a získané kompetence nezbytné pro úspěšné zakončení předmětu). Způsob zakončení předmětu: Předmět je ukončen zkouškou. Pro úspěšné absolvování je třeba napsat test z teorie a (v prezenčním studiu) odevzdat výsledky analýzy zadaných dat systémem Weka
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 8 hodin/semestr.
B_ZZD Information Retrieval from Database
University of Finance and AdministrationSummer 2010
- Extent and Intensity
- 2/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
- Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Lenka Bažantová - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 10:30–11:14 DELL ROOM E302PC, Mon 11:15–12:00 DELL ROOM E302PC, P. Berka
B_ZZD/vAPH: Sat 13. 2. 9:45–11:15 E124, 11:30–13:00 E124, Sat 13. 3. 8:00–9:30 E124, Fri 26. 3. 17:15–18:45 E124, P. Berka - Prerequisites (in Czech)
- Expertní systémy
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme VSFS, B-INF) (2)
- Course objectives (in Czech)
- Cílem předmětu je seznámit studenty s metodami automatizovaného získávání znalostí z databází. V předmětu bude podán přehled problematiky (která je klíčovým faktorem rozvoje informačních technologií), používaných metod a systémů vyvíjených ve světě a u nás. V praktické části budou studenti pracovat s některými vybranými systémy.
- Syllabus (in Czech)
- Tato osnova je určena pro prezenční studium, průběh výuky pro kombinované studium je uveden ve studijních materiálech formou metodického listu (ML).
- Obsah přednášek:
- 1. Proces dobývání znalostí z databází: typy úloh, dílčí kroky, metodiky.
- 2. Východiska dobývání znalostí: databázové techniky, statistické metody analýzy dat
- 3. Strojové učení
- 4. Metody dobývání znalostí:
- 4.1 Symbolické metody strojového učení: rozhodovací stromy, rozhodovací pravidla, asociační pravidla, případové usuzování.
- 4.2 Subsymbolické metody strojového učení: neuronové sítě, bayesovská klasifikace, genetické algoritmy.
- 5. Interpretace nalezených znalostí: testování a kombinování modelů,vizualizace.
- 6. Předzpracování dat: selekce, transformace, diskretizace.
- Literature
- Povinná literatura
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Kelemen, J. a kol.: Pozvanie do znalostnej spoločnosti. Iura Edition, Bratislava, 2007
- Doporučená literatura
- Witten I., Frank E.: Data Mining, Practical Machine Learning tools and Techniques with Java. Second edition. Morgan Kaufmann, San Francisco 2005
- Han J., Kerber M.: Data Mining, Concepts and Techniques. Morgan Kaufmann, San Francisco 2001
- Další zdroje
- sorry.vse.cz/~berka/B_ZZD
- www.kdnuggets.com
- Assessment methods (in Czech)
- Typ výuky: Výuka probíhá formou přednášek Rozsah povinné účasti ve výuce: Minimální povinná účast na cvičení v prezenčním studiu je 80%, na řízených skupinových konzultacích v kombinovaném studiu 50%. Studentům, kteří nesplní povinný rozsah účasti, mohou být v průběhu semestru zadány dodatečné studijní povinnosti (v míře, která umožní prokázat studijní výsledky a získané kompetence nezbytné pro úspěšné zakončení předmětu). Způsob zakončení předmětu: Předmět je ukončen zkouškou. Pro úspěšné absolvování je třeba napsat test z teorie a (v prezenčním studiu) odevzdat výsledky analýzy zadaných dat systémem Weka
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 8 hodin za semestr.
B_ZZD Information Retrieval from Database
University of Finance and AdministrationSummer 2009
- Extent and Intensity
- 2/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
RNDr. Václav Vohánka (seminar tutor) - Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Lenka Bažantová - Timetable of Seminar Groups
- B_ZZD/pAPH: Mon 8:45–9:29 DELL ROOM E302PC, Mon 9:30–10:15 DELL ROOM E302PC, P. Berka
B_ZZD/vAPH: Sat 7. 2. 9:45–11:15 DELL ROOM E302PC, 11:30–13:00 DELL ROOM E302PC, Sat 21. 2. 8:00–9:30 DELL ROOM E302PC, 9:45–11:15 DELL ROOM E302PC, P. Berka - Prerequisites (in Czech)
- Základní znalosti práce na počítači, znalosti matematiky a logiky na úrovni úvodních kurzů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme VSFS, B-INF) (2)
- Course objectives (in Czech)
- Anotace je stejná pro obě formy studia. Cíl kurzu: Cílem předmětu je seznámit studenty s metodami automatizovaného získávání znalostí z databází. V předmětu bude podán přehled problematiky (která je klíčovým faktorem rozvoje informačních technologií), používaných metod a systémů vyvíjených ve světě a u nás. V praktické části budou studenti pracovat s některými vybranými systémy.
- Syllabus (in Czech)
- Tato osnova je určena pro prezenční studium, průběh výuky pro kombinované studium je uveden ve studijních materiálech formou metodického listu (ML). Obsah přednášek: 1. Proces dobývání znalostí z databází: typy úloh, dílčí kroky, metodiky. 2. Východiska dobývání znalostí: databázové techniky, statistické metody analýzy dat 3. Strojové učení 4. Metody dobývání znalostí: 4.1 Symbolické metody strojového učení: rozhodovací stromy, rozhodovací pravidla, asociační pravidla, případové usuzování. 4.2 Subsymbolické metody strojového učení: neuronové sítě, bayesovská klasifikace, genetické algoritmy. 5. Interpretace nalezených znalostí: testování a kombinování modelů,vizualizace. 6. Předzpracování dat: selekce, transformace, diskretizace.
- Literature
- Berka,P.Dobývání znalostí z databází. Academia, Praha 2003. ISBN 80-200-1062-9.
- Assessment methods (in Czech)
- Vyučující metody: Metody hodnocení Předmět je ukončen zkouškou. Pro úspěšné absolvování je třeba: napsat test z teorie odevzdat výsledky analýzy zadaných dat systémem Weka
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Information on the extent and intensity of the course: 8 hodin za semestr.
B_ZZD Information Retrieval from Database
University of Finance and AdministrationWinter 2007
- Extent and Intensity
- 2/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Petr Berka, CSc. (seminar tutor)
RNDr. Václav Vohánka (seminar tutor) - Guaranteed by
- prof. Ing. Petr Berka, CSc.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Lenka Bažantová - Timetable of Seminar Groups
- B_ZZD/pAPH: Tue 12:15–12:59 DELL ROOM E302PC, Tue 13:00–13:45 DELL ROOM E302PC, P. Berka
B_ZZD/uAPH: Tue 9. 10. 15:45–17:15 DELL ROOM E302PC, Tue 16. 10. 15:45–17:15 DELL ROOM E302PC, 17:30–19:00 DELL ROOM E302PC, Tue 6. 11. 17:30–19:00 DELL ROOM E302PC, 19:15–20:45 DELL ROOM E302PC, P. Berka
B_ZZD/vAMO: Sat 27. 10. 11:30–13:00 M11PC, Sat 10. 11. 9:45–11:15 M11PC, 11:30–13:00 M11PC, Sat 1. 12. 9:45–11:15 M11PC, 11:30–13:00 M11PC, V. Vohánka
B_ZZD/vAPH: Sat 24. 11. 9:45–11:15 E303PC, 11:30–13:00 E303PC, Sat 8. 12. 9:45–11:15 E303PC, 11:30–13:00 E303PC, Fri 4. 1. 13:45–15:15 E303PC, P. Berka - Prerequisites (in Czech)
- Základní znalosti práce na počítači, znalosti matematiky a logiky na úrovni úvodních kurzů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme VSFS, B-INF) (2)
- Course objectives (in Czech)
- Anotace je stejná pro obě formy studia. Cíl kurzu: Cílem předmětu je seznámit studenty s metodami automatizovaného získávání znalostí z databází. V předmětu bude podán přehled problematiky (která je klíčovým faktorem rozvoje informačních technologií), používaných metod a systémů vyvíjených ve světě a u nás. V praktické části budou studenti pracovat s některými vybranými systémy.
- Syllabus (in Czech)
- Tato osnova je určena pro prezenční studium, průběh výuky pro kombinované studium je uveden ve studijních materiálech formou metodického listu (ML). Obsah přednášek: 1. Získávání znalostí z databází: manažerský pohled, zdroje a součásti. 2. Proces KDD: 2.1 Předzpracování: selekce, transformace, diskretizace... 2.2 Dolování z dat: typy úloh, obecné principy 2.3 Statistické metody: regrese, shluková analýza, diskriminační analýza. 2.4 Symbolické metody strojového učení: rozhodovací stromy, rozhodovací pravidla, asociační pravidla, případové usuzování. 2.5 Subsymbolické metody strojového učení: neuronové sítě, bayesovská klasifikace, genetické algoritmy. 2.6 Interpretace nalezených znalostí: testování,vizualizace. 3. Systémy KDD: Clementine, WEKA. 4. Aplikace KDD.
- Assessment methods (in Czech)
- Vyučující metody: Metody hodnocení Předmět je ukončen zkouškou. Pro úspěšné absolvování je třeba: napsat test z teorie odevzdat výsledky analýzy zadaných dat systémem Weka
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Information on the extent and intensity of the course: 10 hodin za semestr.
- Enrolment Statistics (recent)