BA_Ma_2 Mathematics 2

Vysoká škola finanční a správní
léto 2020
Rozsah
2/2/0. 16 hodin KS/semestr. 6 kr. Ukončení: zk.
Vyučující
Mgr. Barbora Batíková, Ph.D. (cvičící)
PaedDr. Renata Majovská, PhD. (cvičící)
Garance
Mgr. Barbora Batíková, Ph.D.
Katedra informatiky a matematiky (FES, KIM) – Katedry – Vysoká škola finanční a správní
Kontaktní osoba: Ivana Plačková
Rozvrh seminárních/paralelních skupin
BA_Ma_2/cCUXPH: Čt 10:30–11:14 E125, Čt 11:15–12:00 E125, kromě Čt 20. 2. ; a Čt 5. 3. 14:00–15:30 E125, B. Batíková
BA_Ma_2/cECPH: Čt 12:15–12:59 E228, Čt 13:00–13:45 E228, kromě Čt 20. 2. ; a Čt 19. 3. 14:00–15:30 E125, B. Batíková
BA_Ma_2/pECCUXPH: Čt 8:45–9:29 E004, Čt 9:30–10:15 E004, R. Majovská
Předpoklady
BA_Ma_1 Mathematics 1
The requirement for the completion of this course is completion of the course BA_MaB_1.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Students will learn the notions and procedures used in the investigation of the behaviour of functions (local extremes, convex function and concave function and their geometrical interpretations). Furthermore, they will learn the meanings of the antiderivative, indefinite integral, method of integration by parts, method of integration by substitution, integration of rational functions, and Riemann’s definite integral and its application. Infinite number series, power series and the development of functions into series will also be presented to the students. The last topic are functions of several variables, particularly partial derivatives and finding extrema.
Výstupy z učení
At the end of the course students will be able to: -find local extremes and intervals of monotony of a function -find points of inflection and intervals of convexity and concavity of a function -evaluate an indefinite integral (by parts, by substitution), definite integral and describe its applications -describe basic properties of infinite series and power series -find local extremes of a function of two variables
Osnova
  • 1. Monotonicity and local extremes.
  • 2. Convexity, concavity and inflection points.
  • 3. Graph of function. Taylor polynomial.
  • 4. Indefinite integral.
  • 5. Integration by parts.
  • 6. Integration by substitution.
  • 7. Definite integral.
  • 8. Improper integral.
  • 9. Infinite series.
  • 10. Power series.
  • 11. Functions of several variables. Partial derivatives.
  • 12. Local extremes of function of two variables .
Literatura
    povinná literatura
  • Mathematics for Economics Plný text k dispozici By: Hoy, Michael; Rees, Ray; Stengos, Thanasis; Livernois, John; McKenna, Chris. Edition: 3rd ed. Cambridge, Mass : MIT Press. 2011. eBook.
  • Neustupa J.: Mathematics I. Vydavatelství ČVUT, Praha 2004, 2. vydání
    doporučená literatura
  • Mathematics for economic universities, Jindřich Klůfa, Nikola Kaspříková, Vydavatel: EKOPRESS ISBN: 978-80-87865-01-9, Vyšlo: 2013/10
Výukové metody
PS: (full time students) 2 hours per week of lectures and 2 hours per week of seminars (2/2); KS: (part time students) 12 seminars (90 min each). Lectures for present studies will be split into theoretical as well as practical part. Theoretical parts will be always explained on practical examples. Even more interactive form of study is applied in KS (part time study). Students in full time study program should attend 75% of seminars as a minimum. Students in part time study program should attend 50% of seminars as a minimum.
Metody hodnocení
Compulsory seminar participation is 75% in full-time study. The subject is completed by credit test and written examination. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. Grading will be based on an individual written examination.
Vyučovací jazyk
Angličtina
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích léto 2021, léto 2022, léto 2023, léto 2024, léto 2025.