VSFS:B_ZML Mathematical Logic - Course Information
B_ZML Fundamentals of Mathematical Logic
University of Finance and AdministrationSummer 2022
- Extent and Intensity
- 0/2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZML/cAPH: Mon 12:15–12:59 E004, Mon 13:00–13:45 E004, except Mon 28. 2., except Mon 14. 3. ; and Mon 28. 2. 12:15–13:45 E227, Mon 28. 3. 14:00–15:30 E004, E. Ulrychová
B_ZML/vAPH: Sat 12. 2. 14:00–15:30 E305, 15:45–17:15 E305, Sat 26. 2. 14:00–15:30 E305, 15:45–17:15 E305, Fri 8. 4. 17:30–19:00 S35, 19:15–20:45 S35, E. Ulrychová - Prerequisites
- There are no prerequisites for this course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the basic terms of propositional and predicate logic: propositional formula and its truth value, tautology, contradiction, conjunctive and disjunctive normal form, formula in predicate logic.
- Learning outcomes
- At the end of the course students should be able to: formalize simple statements, determine a truth value of a propositional formula using a truth table, use important tautologies, to find conjunctive and disjunctive normal forms of formulas, interpret and negate formulas in predicate logic.
- Syllabus
- 1. Introduction to the study of logic
- 2. Basic concepts
- 3. Formalized languages
- 4. Logical connectives
- 5. Full list of logical connectives
- 6. Functional completeness in propositional logic
- 7. Selected important formulas of propositional logic
- 8. Axiomatization
- 9. Predicate logic
- 10. Selected important formulas of predicate logic
- 11. Conjunctive and disjunctive normal forms
- 12. Minimization of conjunctive and disjunctive normal forms
- Literature
- required literature
- TRLIFAJOVÁ, Kateřina a Daniel VAŠATA. Matematická logika. Praha: ČVUT, 2013. 174 s. ISBN 978-80-01-05342-3.
- ČECHÁK, Vladimír. Základy logiky a metodologie. Praha: Vysoká škola finanční a správní, 2007. Eupress. ISBN 978-80-86754-90-1.
- recommended literature
- JIRKŮ, Petr a Jiřina VEJNAROVÁ. Formální logika - neformální výklad základů formální logiky. Praha: VŠE - Oeconomica, 2013. 161 s. ISBN 80-245-0974-1.
- SOCHOR, Antonín. Klasická matematická logika. Praha: Karolinum, 2001. 402 s. 80-246-0218-0.
- Teaching methods
- The course is realised in the form of seminars in full time study and tutorials in part time study. Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
- Assessment methods
- The course is completed with a credit. Passing a written test (min. 60%) is required to award the credit.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 12 hodin KS/semestr.
- Enrolment Statistics (Summer 2022, recent)
- Permalink: https://is.vsfs.cz/course/vsfs/summer2022/B_ZML