VSFS:B_ZML Mathematical Logic - Course Information
B_ZML Fundamentals of Mathematical Logic
University of Finance and AdministrationWinter 2023
- Extent and Intensity
- 0/2/0. 3 credit(s). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_ZML/cAPH: Tue 14:00–14:44 E306, Tue 14:45–15:30 E306, E. Ulrychová
B_ZML/vAPH: Sat 30. 9. 9:45–11:15 E307, 11:30–13:00 E307, Sat 4. 11. 9:45–11:15 E307, 11:30–13:00 E307, Sat 16. 12. 9:45–11:15 E307, 11:30–13:00 E307, E. Ulrychová - Prerequisites
- There are no prerequisites for this course.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the basic terms of propositional and predicate logic: propositional formula and its truth value, tautology, contradiction, conjunctive and disjunctive normal form, formula in predicate logic.
- Learning outcomes
- At the end of the course students should be able to: formalize simple statements, determine a truth value of a propositional formula using a truth table, use important tautologies, to find conjunctive and disjunctive normal forms of formulas, interpret and negate formulas in predicate logic.
- Syllabus
- 1. Introduction to the study of logic
- 2. Basic concepts
- 3. Formalized languages
- 4. Logical connectives
- 5. Full list of logical connectives
- 6. Functional completeness in propositional logic
- 7. Selected important formulas of propositional logic
- 8. Axiomatization
- 9. Predicate logic
- 10. Selected important formulas of predicate logic
- 11. Conjunctive and disjunctive normal forms
- 12. Minimization of conjunctive and disjunctive normal forms
- Literature
- required literature
- ULRYCHOVÁ, Eva. Matematická logika. Výukové materiály v ISu, 2022.
- TRLIFAJOVÁ, Kateřina a Daniel VAŠATA. Matematická logika. Praha: ČVUT, 2013 (dotisk 2018). 174 s. ISBN 978-80-01-05342-3.
- recommended literature
- ČECHÁK, Vladimír. Základy logiky a metodologie. Praha: Vysoká škola finanční a správní, 2007. Eupress. ISBN 978-80-86754-90-1.
- SOCHOR, Antonín. Klasická matematická logika. Praha: Karolinum, 2001. 402 s. 80-246-0218-0.
- PEREGRIN, Jaroslav. Logika a logiky: systém klasické výrokové logiky, jeho rozšíření a alternativy. Praha: Academia, 2004. ISBN 80-200-1187-0.
- Teaching methods
- The course is realised in the form of seminars in full time study and tutorials in part time study. Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
- Assessment methods
- The course is completed with a credit. Passing a written test (min. 60%) is required to award the credit.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 12 hodin KS/semestr.
- Enrolment Statistics (Winter 2023, recent)
- Permalink: https://is.vsfs.cz/course/vsfs/winter2023/B_ZML