VSFS:B_MaA_2 Mathematics A 2 - Course Information
B_MaA_2 Mathematics A 2
University of Finance and AdministrationSummer 2018
- Extent and Intensity
- 2/2. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- PaedDr. Renata Majovská, PhD. (seminar tutor)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_MaA_2/cAPH: Tue 15:45–16:29 E129, Tue 16:30–17:15 E129, R. Majovská
B_MaA_2/pAPH: Mon 14:00–14:44 E228, Mon 14:45–15:30 E228, E. Ulrychová
B_MaA_2/vAPH: Fri 16. 2. 14:00–15:30 E123, 15:45–17:15 E123, Fri 16. 3. 14:00–15:30 E227, 15:45–17:15 E227, Fri 20. 4. 14:00–15:30 E127, E. Ulrychová - Prerequisites
- B_MaA_1 Mathematics A 1
The requirement for the completion of this course is completion of the course B_MaA_1. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the investigation of the behaviour of functions, they will get familiar with Taylor polynomial. Students gain basic knowledge of the theory of indefinite, definite and improper integral. They will get familiar with basics of the theory of infinite series. Students will get familiar with basics of the theory of functions of more variables and with terms and methods of finding of their extrema.
- Learning outcomes
- At the end of the course students should be able to:
- investigate the behaviour of functions
- find the Taylor polynomial for a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- decide about the convergence or divergence of numerical series and to find the domain of convergence of the power series
- find extrema of function of two variables (local extrema, constrained extrema, global extrema on a compact set) - Syllabus
- 1. Behaviour of a function. Taylor polynomial
- 2. Indefinite integral
- 3. Integration by parts
- 4. Integration by substitution
- 5. Integration of rational functions
- 6. Definite integral and improper integral
- 7. Infinite series
- 8. Power series
- 9. Function of several variables. Domain of the function of two variables
- 10. Partial derivatives of the first and second order.
- 11. Local extrema of functions of two variables.
- 12. Constrained extrema. Extrema of the function on a compact set.
- Literature
- required literature
- BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
- BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
- recommended literature
- BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
- Teaching methods
- Lectures and seminars in full-time study; tutorials in part-time study; compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study. Students with lower than required participation have to fulfill additional study duties.
- Assessment methods
- The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 10 hodin KS/semestr.
- Enrolment Statistics (Summer 2018, recent)
- Permalink: https://is.vsfs.cz/course/vsfs/summer2018/B_MaA_2