VSFS:B_Ma_2 Mathematics 2 - Course Information
B_Ma_2 Mathematics 2
University of Finance and AdministrationSummer 2020
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
- Guaranteed by
- RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ivana Plačková - Timetable of Seminar Groups
- B_Ma_2/cAPH: Mon 12:15–12:59 E129, Mon 13:00–13:45 E129, E. Ulrychová
B_Ma_2/cEKPH: Tue 12:15–12:59 E222, Tue 13:00–13:45 E222, E. Ulrychová
B_Ma_2/cFPH: Tue 10:30–11:14 E129, Tue 11:15–12:00 E129, E. Ulrychová
B_Ma_2/pAEKFPH: Mon 10:30–11:14 E007KC, Mon 11:15–12:00 E007KC, E. Ulrychová
B_Ma_2/vAEKFPH: Fri 14. 2. 14:00–15:30 E227, 15:45–17:15 E227, Fri 28. 2. 14:00–15:30 E227, 15:45–17:15 E227, Fri 13. 3. 17:30–19:00 E227, 19:15–20:45 E227, Fri 17. 4. 14:00–15:30 E227, 15:45–17:15 E227, E. Ulrychová - Prerequisites
- B_Ma_1 Mathematics 1
The condition for the completion of this course is completion of the course B_MaB_1. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.
- Learning outcomes
- At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables - Syllabus
- 1. Monotony and local extrema
- 2. Convexity and concavity, inflection points
- 3. Behaviour of a function. Taylor polynomial
- 4. Indefinite integral
- 5. Integration by parts
- 6. Integration by substitution
- 7. Definite integral
- 8. Improper integral
- 9. Infinite series
- 10. Power series
- 11. Function of several variables, partial derivatives.
- 12. Local extrema of functions of two variables
- Literature
- required literature
- BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
- BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
- recommended literature
- BATÍKOVÁ, Barbora a kolektiv. Učebnice matematiky pro ekonomické fakulty, Praha: Oeconomica, 2009. 206 s. ISBN 978-80-245-1539-7.
- Teaching methods
- The course is realised in the form of lectures and seminars in full time
study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study. - Assessment methods
- The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 16 hodin KS/semestr.
- Enrolment Statistics (Summer 2020, recent)
- Permalink: https://is.vsfs.cz/course/vsfs/summer2020/B_Ma_2