B_MaB_2 Mathematics B 2

University of Finance and Administration
Summer 2013
Extent and Intensity
2/1. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Petr Budinský, CSc. (seminar tutor)
RNDr. Hana Hladíková, Ph.D. (seminar tutor)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
RNDr. Václav Vohánka (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Dagmar Medová, DiS.
Timetable of Seminar Groups
B_MaB_2/cBPH: each even Wednesday 12:15–12:59 E122, each even Wednesday 13:00–13:45 E122, E. Ulrychová
B_MaB_2/cRMO: each even Monday 17:30–18:14 M26, each even Monday 18:15–19:00 M26, V. Vohánka
B_MaB_2/cR1PH: each odd Monday 14:00–14:44 E223, each odd Monday 14:45–15:30 E223, E. Ulrychová
B_MaB_2/cR2PH: each odd Wednesday 12:15–12:59 E129, each odd Wednesday 13:00–13:45 E129, E. Ulrychová
B_MaB_2/cR3PH: each odd Wednesday 14:00–14:44 E122, each odd Wednesday 14:45–15:30 E122, E. Ulrychová
B_MaB_2/cR4PH: each even Wednesday 14:00–14:44 E223, each even Wednesday 14:45–15:30 E223, E. Ulrychová
B_MaB_2/pBR12PH: Mon 12:15–12:59 E004, Mon 13:00–13:45 E004, E. Ulrychová
B_MaB_2/pRMO: Mon 15:45–16:29 M26, Mon 16:30–17:15 M26, V. Vohánka
B_MaB_2/pR34PH: Mon 10:30–11:14 E004, Mon 11:15–12:00 E004, E. Ulrychová
B_MaB_2/uRKL: Tue 19. 2. 14:00–15:30 K311, 15:45–17:15 K311, Tue 19. 3. 14:00–15:30 K311, 15:45–17:15 K311, Tue 9. 4. 14:00–15:30 K311, 15:45–17:15 K311, E. Ulrychová
B_MaB_2/uRPH: Tue 5. 2. 14:00–15:30 E128, Tue 12. 2. 14:00–15:30 E128, 15:45–17:15 E128, Tue 5. 3. 14:00–15:30 E128, Tue 26. 3. 14:00–15:30 E128, Tue 2. 4. 14:00–15:30 E128, E. Ulrychová
B_MaB_2/vBPPH: Sat 6. 4. 9:45–11:15 E123, 11:30–13:00 E123, Fri 19. 4. 12:00–13:30 E123, 13:45–15:15 E123, Fri 3. 5. 12:00–13:30 E123, 13:45–15:15 E123, E. Ulrychová
B_MaB_2/vRMO: Sat 9. 2. 8:00–9:30 M16, 9:45–11:15 M16, Sat 23. 2. 8:00–9:30 M16, 9:45–11:15 M16, Sat 9. 3. 8:00–9:30 M16, 9:45–11:15 M16, V. Vohánka
B_MaB_2/vRPH: Sat 2. 3. 9:45–11:15 E125, 11:30–13:00 E125, Fri 5. 4. 13:45–15:15 E125, 15:30–17:00 E125, Sat 6. 4. 9:45–11:15 E125, 11:30–13:00 E125, P. Budinský
Prerequisites
The course builds on the subject of B_MaB_1 of winter semester 1st year. Knowledge at the level of this course curriculum is assumed.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite integral, definite integral and its application, and with infinite series.
At the end of the course students should be able to:
- calculate local extremes and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution, integration of rational functions), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
Syllabus
  • 1. Notions pertinent to functions – monotonicity intervals, local extremes of a function.
  • 2. Notions pertinent to the behaviour of functions – convex and concave functions, inflection points.
  • 3. Procedure of investigating the behaviour of a function.
  • 4. Antiderivative and indefinite integral.
  • 5. Integration of elementary functions.
  • 6. Integration by parts.
  • 7. Integration by the substitution method.
  • 8. Integration of rational functions.
  • 9. Riemann’s definite integral.
  • 10. Infinite definite integral.
  • 11. Number series, their convergence and divergence.
  • 12. Power series, their convergence and divergence.
Literature
    required literature
  • BUDINSKÝ, Petr and Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005, 131 pp. ISBN 80-86754-45-6. info
  • BUDINSKÝ, Petr and Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005, 121 pp. ISBN 80-86754-52-9. info
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
General note: Bb1.
Information on the extent and intensity of the course: 12 hodin KS/semestr.
The course is also listed under the following terms Winter 2007, Summer 2008, Winter 2008, Summer 2009, Winter 2009, Summer 2010, Summer 2011, Winter 2011, summer 2012, Winter 2012, Summer 2014, Summer 2015, Summer 2016, Summer 2017, Summer 2018, Summer 2019.
  • Enrolment Statistics (Summer 2013, recent)
  • Permalink: https://is.vsfs.cz/course/vsfs/summer2013/B_MaB_2