B_MaB_2 Mathematics B 2

University of Finance and Administration
Summer 2017
Extent and Intensity
2/1. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Ivan Havlíček, CSc. (seminar tutor)
RNDr. Eva Ulrychová, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Eva Ulrychová, Ph.D.
Department of Computer Science and Mathematics – Departments – University of Finance and Administration
Contact Person: Ing. Barbora Ptáčková
Timetable of Seminar Groups
B_MaB_2/cBPH: each even Tuesday 12:15–12:59 E127, each even Tuesday 13:00–13:45 E127, E. Ulrychová
B_MaB_2/c1RPH: each odd Tuesday 10:30–11:14 E224, each odd Tuesday 11:15–12:00 E224, E. Ulrychová
B_MaB_2/c2RPH: each odd Tuesday 14:00–14:44 E127, each odd Tuesday 14:45–15:30 E127, E. Ulrychová
B_MaB_2/c3RPH: each even Tuesday 10:30–11:14 E127, each even Tuesday 11:15–12:00 E127, E. Ulrychová
B_MaB_2/c4RPH: each odd Monday 14:00–14:44 E124, each odd Monday 14:45–15:30 E124, E. Ulrychová
B_MaB_2/pBRPH: each even Monday 14:00–14:44 E306, each even Monday 14:45–15:30 E306, each even Monday 15:45–16:29 E306, each even Monday 16:30–17:15 E306, E. Ulrychová
B_MaB_2/vPRPH: Fri 31. 3. 14:00–15:30 E129, 15:45–17:15 E129, Sat 22. 4. 9:45–11:15 E129, 11:30–13:00 E129, Fri 28. 4. 15:45–17:15 E227, 17:30–19:00 E227, E. Ulrychová
B_MaB_2/vRMO: Fri 10. 2. 14:00–15:30 M27, 15:45–17:15 M27, Fri 24. 2. 14:00–15:30 M25, 15:45–17:15 M25, Fri 10. 3. 15:45–17:15 M27, Fri 24. 3. 14:00–15:30 M25, I. Havlíček
Prerequisites
B_MaB_1 Mathematics B 1
The condition for the completion of this course is completion of the course B_MaB_1.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Students will get familiar with the notions and procedures used in the investigation of the behaviour of functions, with the indefinite, definite and improper integral, with basics of the theory of infinite series and with basics of the theory of functions of more variables.

At the end of the course students should be able to:
- calculate local extrema and monotonicity intervals of a function
- calculate inflection points and convexity and concavity intervals of a function
- calculate indefinite integral (method of integration by parts, method of integration by substitution), calculate definite integral and describe its application
- describe the basic properties of infinite number series and power series
- calculate local extrema of a function of two variables
Syllabus
  • 1. Monotony and local extrema
  • 2. Convexity and concavity, inflection points
  • 3. Behaviour of a function. Taylor polynomial
  • 4. Indefinite integral
  • 5. Integration by parts
  • 6. Integration by substitution
  • 7. Definite integral
  • 8. Improper integral
  • 9. Infinite series
  • 10. Power series
  • 11. Function of several variables, partial derivatives.
  • 12. Local extrema of functions of two variables
Literature
    required literature
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Matematika pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2013). 131 s. ISBN 80-86754-45-6.
  • BUDINSKÝ, Petr a Ivan HAVLÍČEK. Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření. Praha: VŠFS, 2005 (dotisk 2016). 121 s. ISBN 80-86754-52-9.
    recommended literature
  • BATÍKOVÁ, B. a kol.: Učebnice matematiky pro ekonomické fakulty. Oeconomica, Praha, 2009.
Teaching methods
The course is realised in the form of lectures and seminars in full time study and tutorials in part time study.
Compulsory seminar participation is 75% in full-time study, compulsory tutorial participation is 50% in part-time study.
Assessment methods
The course is completed with a credit and an exam. Passing a written test (min. 60%) is required to award the credit. Prerequisite for taking the exam is the credit. The exam consists of a written part and a verbal part; prerequisite for taking the verbal part of the exam is to pass the written part (min. 50%).
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: 12 hodin KS/semestr.
The course is also listed under the following terms Winter 2007, Summer 2008, Winter 2008, Summer 2009, Winter 2009, Summer 2010, Summer 2011, Winter 2011, summer 2012, Winter 2012, Summer 2013, Summer 2014, Summer 2015, Summer 2016, Summer 2018, Summer 2019.
  • Enrolment Statistics (Summer 2017, recent)
  • Permalink: https://is.vsfs.cz/course/vsfs/summer2017/B_MaB_2