B_MaA_2 Matematika A2

Vysoká škola finanční a správní
léto 2010
Rozsah
2/2. 12hodin/semestr. 4 kr. Ukončení: zk.
Vyučující
doc. RNDr. Slavomír Burýšek, CSc. (cvičící)
doc. RNDr. Věra Burýšková, CSc. (cvičící)
Garance
doc. RNDr. Věra Burýšková, CSc.
Katedra informatiky a matematiky (FES, KIM) – Katedry – Vysoká škola finanční a správní
Kontaktní osoba: Ivana Plačková
Rozvrh seminárních/paralelních skupin
B_MaA_2/cAPH: Út 14:00–14:44 E126, Út 14:45–15:30 E126, S. Burýšek
B_MaA_2/pAPH: Út 12:15–12:59 E126, Út 13:00–13:45 E126, V. Burýšková
B_MaA_2/vAPH: So 13. 2. 9:45–11:15 E306, So 13. 3. 9:45–11:15 E306, So 27. 3. 11:30–13:00 E306, So 17. 4. 9:45–11:15 E225, Pá 30. 4. 15:30–17:00 E306, 17:15–18:45 E306, S. Burýšek
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Lagrangeova věta o střední hodnotě, význam první derivace pro průběh funkce. LHospitalovo pravidlo. * Extrémy funkcí lokální extrémy (nutná podmínka pro lokální extrém), extrémy spojité funkce v uzavřeném intervalu, první a druhá postačující podmínka pro lokální extrém. * Funkce konvexní a konkávní věta o významu druhé derivace pro průběh funkce, intervaly konvexity a konkávity, inflexní body. * Průběh funkce asymptoty grafu funkce, postup při vyšetřování průběhu funkce. * Neurčitý integrál (primitivní funkce) definice neurčitého integrálu (primitivní funkce), věta o množině primitivních funkcí, věta o existenci primitivní funkce, věta o linearitě primitivních funkcí, přehled základních vzorců pro výpočet primitivních funkcí, integrační metoda per-partes. * Neurčitý integrál věta o integraci substitucí, integrace racionální funkce. * Určitý integrál definice určitého integrálu a jeho základní vlastnosti, nevlastní určitý integrál. * Číselné řady definice součtu nekonečné řady, konvergentní a divergentní řady, nutná podmínka konvergence, harmonická řada, geometrická řada. Mocninné řady,poloměr konvergence, intervaly absolutní konvergence, integrování a derivování řad člen po členu. * Rozvoj funkce v mocninnou řadu,Maclaurinovy rozvoje.
Osnova
  • Lagrangeova věta o střední hodnotě, význam první derivace pro průběh funkce. LHospitalovo pravidlo. * Extrémy funkcí lokální extrémy (nutná podmínka pro lokální extrém), extrémy spojité funkce v uzavřeném intervalu, první a druhá postačující podmínka pro lokální extrém. * Funkce konvexní a konkávní věta o významu druhé derivace pro průběh funkce, intervaly konvexity a konkávity, inflexní body. * Průběh funkce asymptoty grafu funkce, postup při vyšetřování průběhu funkce. * Neurčitý integrál (primitivní funkce) definice neurčitého integrálu (primitivní funkce), věta o množině primitivních funkcí, věta o existenci primitivní funkce, věta o linearitě primitivních funkcí, přehled základních vzorců pro výpočet primitivních funkcí, integrační metoda per-partes. * Neurčitý integrál věta o integraci substitucí, integrace racionální funkce. * Určitý integrál definice určitého integrálu a jeho základní vlastnosti, nevlastní určitý integrál. * Číselné řady definice součtu nekonečné řady, konvergentní a divergentní řady, nutná podmínka konvergence, harmonická řada, geometrická řada. * Řady s nezápornými členy srovnávací kritérium, řady s kladnými členy, dAlembertovo kritérium, integrální kritérium, Cauchyho limitní kritérium. * Alternující řady Leibnizovo kritérium, absolutně konvergentní řady. * Násobení řad definice součinu řady, věta o součinu absolutně konvergentních řad. * Mocninné řady poloměr konvergence, intervaly absolutní konvergence, integrování a derivování řad člen po členu. * Rozvoj funkce v mocninnou řadu Maclaurinovy rozvoje, vzorec pro součin mocninných řad.
Literatura
  • Budínský, P.,Havlíček, I.:Matematika pro vysoké školy ekonomického a technického zaměření
  • Budinský, P.,Havlíček, I.:Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření
Metody hodnocení
Způsob zakončení: Zápočet + Zkouška (písemná i ústní)
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2007, léto 2008, zima 2008, léto 2009, zima 2009, zima 2010, léto 2011, zima 2011, léto 2012, zima 2012, léto 2013, léto 2014, léto 2015, léto 2016, léto 2017, léto 2018, léto 2019.