B_MaB_2 Matematika B2

Vysoká škola finanční a správní
léto 2010
Rozsah
1/1. 10hodin/semestr. 4 kr. Ukončení: zk.
Vyučující
doc. RNDr. Petr Budinský, CSc. (cvičící)
doc. RNDr. Slavomír Burýšek, CSc. (cvičící)
doc. RNDr. Věra Burýšková, CSc. (cvičící)
RNDr. Ivan Havlíček, CSc. (cvičící)
Ing. Václav Janoušek (cvičící)
Mgr. Milena Kvaszová (cvičící)
RNDr. Václav Vohánka (cvičící)
Garance
doc. RNDr. Věra Burýšková, CSc.
Katedra informatiky a matematiky (FES, KIM) – Katedry – Vysoká škola finanční a správní
Kontaktní osoba: Ivana Plačková
Rozvrh seminárních/paralelních skupin
B_MaB_2/cBPH: každé liché úterý 10:30–11:14 E126, každé liché úterý 11:15–12:00 E126, V. Burýšková
B_MaB_2/cRMO: každé liché pondělí 12:15–12:59 M24, každé liché pondělí 13:00–13:45 M24, V. Vohánka
B_MaB_2/cR1aPH: každý sudý čtvrtek 8:45–9:29 E223, každý sudý čtvrtek 9:30–10:15 E223, I. Havlíček
B_MaB_2/cR1bPH: každé liché pondělí 12:15–12:59 E224, každé liché pondělí 13:00–13:45 E224, V. Janoušek
B_MaB_2/cR2aPH: každé liché úterý 12:15–12:59 E125, každé liché úterý 13:00–13:45 E125, I. Havlíček
B_MaB_2/cR2bPH: každé liché úterý 12:15–12:59 E223, každé liché úterý 13:00–13:45 E223, S. Burýšek
B_MaB_2/cR3aPH: každý lichý čtvrtek 8:45–9:29 E225, každý lichý čtvrtek 9:30–10:15 E225, V. Janoušek
B_MaB_2/cR3bPH: každý lichý čtvrtek 12:15–12:59 E225, každý lichý čtvrtek 13:00–13:45 E225, V. Janoušek
B_MaB_2/cR4PH: každé liché úterý 10:30–11:14 E223, každé liché úterý 11:15–12:00 E223, I. Havlíček
B_MaB_2/pBR4PH: každé sudé úterý 10:30–11:14 E222, každé sudé úterý 11:15–12:00 E222, V. Burýšková
B_MaB_2/pRMO: každé sudé pondělí 12:15–12:59 M24, každé sudé pondělí 13:00–13:45 M24, V. Vohánka
B_MaB_2/pR123PH: každou sudou středu 10:30–11:14 E306, každou sudou středu 11:15–12:00 E306, I. Havlíček
B_MaB_2/sRKL: St 17. 2. 14:00–15:30 K206, 15:45–17:15 K206, St 24. 2. 14:00–15:30 K206, St 24. 3. 17:30–19:00 K206, St 21. 4. 14:00–15:30 K206, M. Kvaszová
B_MaB_2/sRPH: St 17. 2. 17:30–19:00 E223, St 3. 3. 14:00–15:30 E223, 15:45–17:15 E223, St 24. 3. 14:00–15:30 E223, St 31. 3. 14:00–15:30 E223, P. Budinský
B_MaB_2/vBPPH: So 13. 2. 14:00–15:30 E122, So 13. 3. 14:00–15:30 E122, Pá 26. 3. 13:45–15:15 E122, Pá 30. 4. 13:45–15:15 E122, Pá 7. 5. 13:45–15:15 E122, I. Havlíček
B_MaB_2/vRMO: So 13. 2. 9:45–11:15 M01, 11:30–13:00 M01, So 27. 2. 9:45–11:15 M01, 11:30–13:00 M01, So 13. 3. 11:30–13:00 M01, V. Vohánka
B_MaB_2/vR2PH: So 13. 2. 11:30–13:00 E223, So 13. 3. 11:30–13:00 E223, Pá 16. 4. 13:45–15:15 E223, 15:30–17:00 E223, Pá 7. 5. 15:30–17:00 E223, I. Havlíček
B_MaB_2/vR3PH: So 13. 2. 11:30–13:00 E224, So 13. 3. 11:30–13:00 E224, So 27. 3. 14:00–15:30 E224, 15:45–17:15 E224, So 17. 4. 11:30–13:00 E224, S. Burýšek
Předpoklady
1. Schopnost upravovat algebraické výrazy v rozsahu středních škol 2.Znalost základních vlastností elementárních funkcí, včetně grafů těchto funkcí v rozsahu střední školy
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Anotace je stejná pro všechny formy studia Cíl kursu Ve výuce předmětu matematika B se studenti seznámí se základy diferenciálního a integrálního počtu funkcí jedné proměnné.
Osnova
  • Tato osnova je určena pro prezenční studium, průběh výuky pro kombinované studium je uveden ve studijních materiálech formou metodického listu (ML). Obsah přednášek: Přednášky 1. Význam první derivace pro průběh funkce, lokální extrémy. 2. Význam druhé derivace pro průběh funkce, funkce konvexní a konkávní, inflexní body. 3. Průběh funkce. 4. Neurčitý integrál (věta o integraci per partes, věta o integraci substitucí, integrace základních typů racionálních funkcí). 5. Určitý Newtonův integrál (geometrická interpretace určitého integrálu).Příklady na výpočet integrálů. 6. Nekonečné číselné řady, konvergence a divergence, geometrická řada,mocninné řady. Cvičení: 1. Význam první derivace pro průběh funkce, lokální extrémy. 2. Význam druhé derivace pro průběh funkce, funkce konvexní a konkávní, inflexní body. 3. Průběh funkce. Zápočtová písemka. 4. Neurčitý integrál (věta o integraci per partes, věta o integraci substitucí, integrace základních typů racionálních funkcí). 5. Určitý Newtonův integrál (geometrická interpretace určitého integrálu). Příklady na výpočet integrálů. 6. Geometrická řada. Zápočtová písemka.
Literatura
  • Budinský, P.,Havlíček, I.: Matematika pro vysoké školy ekonomického a technického zaměření.
  • Budinský, P.,Havlíček, I.: Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření.
Metody hodnocení
Vyučující metody Metody hodnocení Způsob zakončení: Zápočet: 80% účast na cvičení, úspěšné napsání 2 zápočtových písemek. Zkouška: písemná i ústní
Informace učitele
Literatura: Budinský, Havlíček: „ Matematika pro vysoké školy ekonomického a technického zaměření“. Budinský, Havlíček: „ Sbírka příkladů z matematiky pro vysoké školy ekonomického a technického zaměření“.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2007, léto 2008, zima 2008, léto 2009, zima 2009, léto 2011, zima 2011, léto 2012, zima 2012, léto 2013, léto 2014, léto 2015, léto 2016, léto 2017, léto 2018, léto 2019.